
Android
Application’s Life Cycle

Victor Matos
Cleveland State University

Notes are based on:
Unlocking Android
by Frank Ableson, Charlie Collins, and Robi Sen.
ISBN 978-1-933988-67-2
Manning Publications, 2009.

Android Developers
http://developer.android.com/index.html

Part 3

http://developer.android.com/index.html

2

3. Android – Application's Life Cycle

Android Applications

An application consists of one or more components that are
defined in the application's manifest file. A component can be one
of the following:

1. An Activity
2. A Service
3. A broadcast receiver
4. A content provider

2

3

3. Android – Application's Life Cycle

Android Applications

1. Activity

An activity usually presents a single visual user interface from which a number of
actions could be performed.

Altough activities work together to form a cohesive user interface, each activity
is independent of the others.

Typically, one of the activities is marked as the first one that should be presented
to the user when the application is launched.

Moving from one activity to another is accomplished by having the current
activity start the next one through so called intents.

3

Reference: Friedger Müffke (friedger@openintents.org)

4

3. Android – Application's Life Cycle

Android Applications

2. Service

A service doesn't have a visual user interface, but rather runs in the background
for an indefinite period of time.

It's possible to connect to (bind to) an ongoing service (and start the service if it's
not already running).

While connected, you can communicate with the service through an interface
that the service exposes.

4

Reference: Friedger Müffke (friedger@openintents.org)

5

3. Android – Application's Life Cycle

Android Applications

3. Broadcast receiver

A broadcast receiver is a component that does nothing but receive and react to
broadcast announcements.

Many broadcasts originate in system code (eg. “you got mail“) but any other
applications can also initiate broadcasts.

Broadcast receivers do not display a user interface. However, they may start an
activity in response to the information they receive, or - as services do - they
may use the notification manager to alert the user.

5

Reference: Friedger Müffke (friedger@openintents.org)

6

3. Android – Application's Life Cycle

Android Applications

4. Content provider

A content provider makes a specific set of the application's data available to
other applications.

The data usually is stored in the file system, or in an SQLite database.

The content provider implements a standard set of methods that enable other
applications to retrieve and store data of the type it controls.

However, applications do not call these methods directly. Rather they use a
content resolver object and call its methods instead. A content resolver can talk
to any content provider; it cooperates with the provider to manage any
interprocess communication that's involved.

6

Reference: Friedger Müffke (friedger@openintents.org)

7

3. Android – Application's Life Cycle

Android Applications

Every Android application runs in its own process
(with its own instance of the Dalvik virtual machine).

Whenever there's a request that should be handled by a particular component,
• Android makes sure that the application process of the component is

running,
• starting it if necessary, and
• that an appropriate instance of the component is available, creating the

instance if necessary.

7

8

3. Android – Application's Life Cycle

Application’s Life Cycle

A Linux process encapsulating an Android application is created for the
application when some of its code needs to be run, and will remain
running until

1. it is no longer needed, OR
2. the system needs to reclaim its memory for use by other

applications.

8

9

3. Android – Application's Life Cycle

Application’s Life Cycle

An unusual and fundamental feature of Android is that an application
process's lifetime is not directly controlled by the application itself.

Instead, it is determined by the system through a combination of

1. the parts of the application that the system knows are running,
2. how important these things are to the user, and
3. how much overall memory is available in the system.

9

10

3. Android – Application's Life Cycle

Component Lifecycles

10

Application components have a lifecycle

1. A beginning when Android instantiates them to respond to
intents

2. An end when the instances are destroyed.

3. In between, they may sometimes be active or inactive, or -in the
case of activities- visible to the user or invisible.

Life as an Android Application:
Active / Inactive
Visible / Invisible

Start End

11

3. Android – Application's Life Cycle

Activty Stack

11

• Activities in the system are managed as an activity stack.

• When a new activity is started, it is placed on the top of the
stack and becomes the running activity -- the previous
activity always remains below it in the stack, and will not
come to the foreground again until the new activity exits.

• If the user presses the Back Button the next activity on the
stack moves up and becomes active.

12

3. Android – Application's Life Cycle

Activity Stack

12

New Activity

Activity 1

Activity 2

Activity 3

Last Running
Activity

Activity n-1

. . .

Running Activity

New Activity
started

Back button pushed or
running activity closed

Activity Stack
Previous

Activities Removed to
free resources

13

3. Android – Application's Life Cycle

Life Cycle States

13

An activity has essentially
three states:

1. It is active or running
2. It is paused or
3. It is stopped .

1414

3. Android – Application's Life Cycle

Life Cycle States

14

An activity has essentially three states:

1. It is active or running when it is in the foreground of the screen
(at the top of the activity stack for the current task).

This is the activity that is the focus for the user's actions.

1515

3. Android – Application's Life Cycle

Life Cycle States

15

An activity has essentially three states:

2. It is paused if it has lost focus but is still visible to the user.

That is, another activity lies on top of it and that new activity either is
transparent or doesn't cover the full screen.

A paused activity is completely alive (it maintains all state and member
information and remains attached to the window manager), but can be
killed by the system in extreme low memory situations.

1616

3. Android – Application's Life Cycle

Life Cycle States

16

An activity has essentially three states:

3. It is stopped if it is completely obscured by another activity.

It still retains all state and member information. However, it is no longer
visible to the user so its window is hidden and it will often be killed by
the system when memory is needed elsewhere.

1717

3. Android – Application's Life Cycle

Application’s
Life Cycle

18

3. Android – Application's Life Cycle

Life Cycle Events

18

If an activity is paused or stopped, the system can drop it from memory
either by asking it to finish (calling its finish() method), or simply killing its
process.

When it is displayed again to the user, it must be completely restarted and
restored to its previous state.

As an activity transitions from state to state, it is notified of the change by
calls to the following protected transition methods:

void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()

void onPause()
void onStop()
void onDestroy()

19

3. Android – Application's Life Cycle

Life Cycle Events

19

All of these methods are hooks that you can override to do appropriate
work when the state changes.

All activities must implement onCreate() to do the initial setup when the
object is first instantiated.

Many activities will also implement onPause() to commit data changes and
otherwise prepare to stop interacting with the user.

20

3. Android – Application's Life Cycle

Application’s Lifetime

20

The seven transition methods define the entire lifecycle of an activity.

The entire lifetime of an activity happens between the first call to
onCreate() through to a single final call to onDestroy().

An activity does all its initial setup of "global" state in onCreate(), and
releases all remaining resources in onDestroy().

21

3. Android – Application's Life Cycle

Visible Lifetime

21

The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop().

During this time, the user can see the activity on-screen, though it may not
be in the foreground and interacting with the user.

The onStart() and onStop() methods can be called multiple times, as the
activity alternates between being visible and hidden to the user.

Between these two methods, you can maintain resources that are needed
to show the activity to the user.

22

3. Android – Application's Life Cycle

Foreground Lifetime

22

The foreground lifetime of an activity happens between a call to
onResume() until a corresponding call to onPause().

During this time, the activity is in front of all other activities on screen and is
interacting with the user.

An activity can frequently transition between the resumed and paused
states — for example,
• onPause() is called when the device goes to sleep or when a new

activity is started,
• onResume() is called when an activity result or a new intent is

delivered.

23

3. Android – Application's Life Cycle

Life Cycle Methods

23

Method: onCreate()

• Called when the activity is first created.
• This is where you should do all of your normal static set up —

create views, bind data to lists, and so on.
• This method is passed a Bundle object containing the activity's

previous state, if that state was captured.
• Always followed by onStart()

24

3. Android – Application's Life Cycle

Life Cycle Methods

24

Method: onRestart()

• Called after the activity has been stopped, just prior to it being
started again.

• Always followed by onStart()

Method: onStart()

• Called just before the activity becomes visible to the user.
• Followed by onResume() if the activity comes to the foreground,

or onStop() if it becomes hidden.

25

3. Android – Application's Life Cycle

Life Cycle Methods

25

Method: onResume()

1. Called just before the activity starts interacting with the user.
2. At this point the activity is at the top of the activity stack, with

user input going to it.
3. Always followed by onPause().

26

3. Android – Application's Life Cycle

Life Cycle Methods

26

Method: onPause()

1. Called when the system is about to start resuming another
activity.

2. This method is typically used to commit unsaved changes to
persistent data, stop animations and other things that may be
consuming CPU, and so on.

3. It should do whatever it does very quickly, because the next
activity will not be resumed until it returns.

4. Followed either by onResume() if the activity returns back to the
front, or by onStop() if it becomes invisible to the user.

5. The activity in this state is killable by the system.

27

3. Android – Application's Life Cycle

Life Cycle Methods

27

Method: onStop()

1. Called when the activity is no longer visible to the user.
2. This may happen because it is being destroyed, or because

another activity (either an existing one or a new one) has been
resumed and is covering it.

3. Followed either by onRestart() if the activity is coming back to
interact with the user, or by onDestroy() if this activity is going
away.

4. The activity in this state is killable by the system.

28

3. Android – Application's Life Cycle

Life Cycle Methods

28

Method: onDestroy()

1. Called before the activity is destroyed.
2. This is the final call that the activity will receive.
3. It could be called either because the activity is finishing (someone

called finish() on it), or because the system is temporarily
destroying this instance of the activity to save space.

4. You can distinguish between these two scenarios with the
isFinishing() method.

5. The activity in this state is killable by the system.

29

3. Android – Application's Life Cycle

Life Cycle Methods

29

Killable States

• Activities on killable states can be terminated by the system at any
time after the method returns, without executing another line of the
activity's code.

• Three methods (onPause(), onStop(), and onDestroy()) are killable.

• onPause() is the only one that is guaranteed to be called before the
process is killed — onStop() and onDestroy() may not be.

• Therefore, you should use onPause() to write any persistent data
(such as user edits) to storage.

As an aside…

Android Preferences

Preferences is a lightweight mechanism to store and retrieve key-value pairs of
primitive data types. It is typically used to store application preferences, such
as a default greeting or a text font to be loaded whenever the application is
started.

Call Context.getSharedPreferences() to read and write values.

Assign a name to your set of preferences if you want to share them with other
components in the same application, or use Activity.getPreferences() with no
name to keep them private to the calling activity.

You cannot share preferences across applications (except by using a content
provider). 30

3. Android – Application's Life Cycle

Life Cycle Methods

30

31

3. Android – Application's Life Cycle

Example
Life Cycle

31

Example
The following application
demonstrates some of
the state transitioning
situations experienced in
the life-cycle of a typical
Android activity.

LAYOUT
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/myScreen"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ff000000"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

<EditText
android:id="@+id/txtColorSelect"
android:hint="Background color (red, green, blue)"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</EditText>
<TextView
android:id="@+id/txtToDo"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:background="#00000000">
<!-- transparent -->
</TextView>
<Button
android:text=" Finish "
android:id="@+id/btnFinish"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Button>
</LinearLayout>

32

3. Android – Application's Life Cycle

Example: Life Cycle

32

Code: Life Cycle Demo. Part 1

Package cis493.lifecycle

import android.app.Activity;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.view.View;

import android.widget.*;

//GOAL: show the following life-cycle events in action

//protected void onCreate(Bundle savedInstanceState);

//protected void onStart();

//protected void onRestart();

//protected void onResume();

//protected void onPause();

//protected void onStop();

//protected void onDestroy();

33

3. Android – Application's Life Cycle

Example: Life Cycle

33

Code: Life Cycle Demo. Part 2

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

myScreen = (LinearLayout) findViewById(R.id.myScreen);

txtToDo = (TextView) findViewById(R.id.txtToDo);

String msg = "Instructions: \n "

+ "0. New instance (onCreate, onStart, onResume) \n "

+ "1. Back Arrow (onPause, onStop, onDestroy) \n "

+ "2. Finish (onPause, onStop, onDestroy) \n "

+ "3. Home (onPause, onStop) \n "

+ "4. After 3 > App Tab > re-execute current app \n "

+ " (onRestart, onStart, onResume) \n "

+ "5. Run DDMS > Receive a phone call or SMS \n "

+ " (onRestart, onStart, onResume) \n "

+ "6. Enter some data - repeat steps 1-5 \n ";

txtToDo.setText(msg);

Code: Life Cycle Demo. Part 2

txtColorSelect = (EditText) findViewById(R.id.txtColorSelect);

// you may want to skip discussing the listener until later

txtColorSelect.addTextChangedListener(new TextWatcher(){

public void onTextChanged(CharSequence s, int start, int before, int count) {

// TODO Auto-generated method stub

}

public void beforeTextChanged(CharSequence s, int start, int count,int after) {

// TODO Auto-generated method stub

}

public void afterTextChanged(Editable s) {

changeBackgroundColor(s.toString());

}

});

btnFinish = (Button) findViewById(R.id.btnFinish);

btnFinish.setOnClickListener(new OnClickListener() {

public void onClick(View arg0) {

finish();

}

});

Toast.makeText(getApplicationContext(), "onCreate", 1).show();

}
34

3. Android – Application's Life Cycle

Example: Life Cycle

34

35

3. Android – Application's Life Cycle

Example: Life Cycle

35

Code: Life Cycle Demo. Part 3

@Override

protected void onPause() {

super.onPause();

saveDataFromCurrentState();

Toast.makeText(this, "onPause", 1).show();

}

@Override

protected void onRestart() {

super.onRestart();

Toast.makeText(this, "onRestart", 1).show();

}

@Override

protected void onResume() {

super.onResume();

Toast.makeText(this, "onResume", 1).show();

}

36

3. Android – Application's Life Cycle

Example: Life Cycle

36

Code: Life Cycle Demo. Part 4

@Override

protected void onStart() {

// TODO Auto-generated method stub

super.onStart();

updateFromSavedState();

Toast.makeText(this, "onStart", 1).show();

}

@Override

protected void onDestroy() {

// TODO Auto-generated method stub

super.onDestroy();

Toast.makeText(this, "onDestroy", 1).show();

}

@Override

protected void onStop() {

// TODO Auto-generated method stub

super.onStop();

Toast.makeText(this, "onStop", 1).show();

}

37

3. Android – Application's Life Cycle

Example: Life Cycle

37

Code: Life Cycle Demo. Part 5

protected void saveDataFromCurrentState() {

SharedPreferences myPrefs = getSharedPreferences(MYPREFSID, actMode);

SharedPreferences.Editor myEditor = myPrefs.edit();

myEditor.putString("myBkColor", txtColorSelect.getText().toString());

myEditor.commit();

}// saveDataFromCurrentState

protected void updateFromSavedState() {

SharedPreferences myPrefs = getSharedPreferences(MYPREFSID, actMode);

if ((myPrefs != null) && (myPrefs.contains("myBkColor"))) {

String theChosenColor = myPrefs.getString("myBkColor", "");

txtColorSelect.setText(theChosenColor);

changeBackgroundColor(theChosenColor);

}

}// UpdateFromSavedState

protected void clearMyPreferences() {

SharedPreferences myPrefs = getSharedPreferences(MYPREFSID, actMode);

SharedPreferences.Editor myEditor = myPrefs.edit();

myEditor.clear();

myEditor.commit();

}

38

3. Android – Application's Life Cycle

Example: Life Cycle

38

Code: Life Cycle Demo. Part 6

private void changeBackgroundColor (String theChosenColor){

// change background color

if (theChosenColor.contains("red"))

myScreen.setBackgroundColor(0xffff0000);

else if (theChosenColor.contains("green"))

myScreen.setBackgroundColor(0xff00ff00);

else if (theChosenColor.contains("blue"))

myScreen.setBackgroundColor(0xff0000ff);

else {

//reseting user preferences

clearMyPreferences();

myScreen.setBackgroundColor(0xff000000);

}

}

39

3. Android – Application's Life Cycle

Example: Life Cycle

39

Code: Life Cycle Demo. Part 8

/*
protected void onRestoreInstanceState(Bundle savedInstanceState)
This method is called after onStart() when the activity is being re-initialized
from a previously saved state.
The default implementation of this method performs a restore of any view state
that had previously been frozen by onSaveInstanceState(Bundle).
*/
@Override

protected void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);

Toast.makeText(getBaseContext(),

"onRestoreInstanceState ...BUNDLING",

Toast.LENGTH_LONG).show();

}

40

3. Android – Application's Life Cycle

Example: Life Cycle

40

Code: Life Cycle Demo. Part 9

/*
protected void onSaveInstanceState(Bundle outState)

Called to retrieve per-instance state from an activity before being killed
so that the state can be restored in

onCreate(Bundle) or
onRestoreInstanceState(Bundle) (the Bundle populated by this method

will be passed to both).
This method is called before an activity may be killed so that when it comes
back some time in the future it can restore its state. For example, if activity B
is launched in front of activity A, and at some point activity A is killed to
reclaim resources, activity A will have a chance to save the current state of
its user interface via this method so that when the user returns to activity A,
the state of the user interface can be restored via:
onCreate(Bundle) or onRestoreInstanceState(Bundle).
*/

41

3. Android – Application's Life Cycle

Example: Life Cycle

41

Code: Life Cycle Demo. Part 10

@Override

protected void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

Toast.makeText(getBaseContext(),

"onSaveInstanceState ...BUNDLING",

Toast.LENGTH_LONG).show();

} // onSaveInstanceState

}//LyfeCicleDemo

42

3. Android – Application's Life Cycle

Example: Life Cycle

42

onCreate… onStart… onResume…

43

3. Android – Application's Life Cycle

Example: Life Cycle

43

onPause… onStop… onDestroy…

After pressing “Back Arrow”

44

3. Android – Application's Life Cycle

Example: Life Cycle

44

After

pressing “Home”

After

re-executing AndLife2

After

“Back Arrow” or Finish

onSavedInstanceState >

onPause >

onStop >

onRestart >

onStart >

onResume >

onPause >

onStop >

onDestroy >

End of Example

Preserving State Information

1. Enter data: “Hasta la vista!”
2. Click Home button
3. onSavedInstance > onPause > onStop
4. Read your SMS
5. Execute an instance of the application
6. onRestart > onStart > onResume
7. You see the data entered in step 1

Application’s Life Cycle

45

Questions ?

