
Android Development
Introduction

Victor Matos
Cleveland State University

Notes are based on:
Unlocking Android
by Frank Ableson, Charlie Collins, and Robi Sen.
ISBN 978-1-933988-67-2
Manning Publications, 2009.
&
Android Developers
http://developer.android.com/index.html

1

Chapter 1 - Goals

THE BIG PICTURE

1. What is Android?

2. Overview development environment

2

Chapter 1 - Resources

Android’s web page

3

http://www.android.com/

http://www.android.com/

What is Android?

• Android is an open-source software platform
created by Google and the Open Handset
Alliance.

• It is primarily used to power mobile phones.

• It has the capability to make inroads in many
other (non-phone) embedded application
markets.

4

What is Android?

• Android™ consists of a complete set of
software components for mobile devices
including:

– an operating system,

– middleware, and

– embedded key mobile applications

– a large market.

5

Why Android?
Listen from the project creators/developers (2.19 min)

– Nick Sears. Co-founder of Android
– Steve Horowitz. Engineering Director
– Dam Morrill. Developer
– Peisun Wu. Engineering Project Manager
– Erick Tseng. Project Manager
– Iliyan Malchev. Engineer
– Mike Cleron. Software Manager
– Per Gustafsson. Graphics Designer.
– etc…

• http://www.youtube.com/watch?v=6rYozIZOgDk&eurl=http://www.android.com/about/&feature=player_embedd
ed

• You will hear statements such as
“…currently it is too difficult to make new products … open software brings more
innovation … choices … lower costs … more applications such as family planner, my
taxes, understand my wife better, … ”

6

http://www.youtube.com/watch?v=6rYozIZOgDk&eurl=http://www.android.com/about/&feature=player_embedded
http://www.youtube.com/watch?v=6rYozIZOgDk&eurl=http://www.android.com/about/&feature=player_embedded
http://www.youtube.com/watch?v=6rYozIZOgDk&eurl=http://www.android.com/about/&feature=player_embedded

What is Open Handset Alliance?
• Quoting from www.OpenHandsetAlliance.com

page

• “… Open Handset Alliance™, a group of 47 technology
and mobile companies have come together to accelerate
innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience.

• Together we have developed Android™, the first
complete, open, and free mobile platform.

• We are committed to commercially deploy handsets and
services using the Android Platform. “

7

Open Handset Alliance Members

Operators Software Co. Commercializat. Semiconductor Handset Manf

China Mobile
China Unicom
KDDI Corp.
NTT DoCoMo
Sprint Nextel
T-Mobile
Telecom Italia
Telefónica
Vodafone
Softbank
…
Ericsson

Ascender Corp.
eBay
Esmertec
Google
LivingImage
NMS Comm.
Nuance Comm.
PacketVideo
SkyPop
SONiVOX
…
Borqs

Aplix
Noser Engineering
Astonishing Tribe
Wind River Systems
Omron Software
…
Teleca

Audience
Broadcom Corp.
Intel Corp.
Marvell Tech.
Group
Nvidia Corp.
Qualcomm
SiRF Tech. Holdings
Synaptics
Texas Instr.
AKM Semicond.
ARM
Atheros Comm
...
EMP

ACER
ASUS
HTC
LG
Motorola
Samsung
ASUSTek
Garmin
Huawei Tech
LG
Samsung
…
Sony Ericsson
Toshiba

8

See Android Developers

Short video (4 min.)
Showing Dave Bort
and Dan Borstein,
two members of the
Android Open Source
Project talk about

the project.

9

http://www.youtube.com/watch?v=7Y4thikv-OM

http://www.youtube.com/watch?v=7Y4thikv-OM
http://www.youtube.com/watch?v=7Y4thikv-OM
http://www.youtube.com/watch?v=7Y4thikv-OM

The Android Platform
Again, what did they say about Android?

• Android is a software environment built for mobile
devices.

• It is not a hardware platform.
• Android includes:

• Linux kernel-based OS,
• a rich UI,
• telephone functionality,
• end-user applications,
• code libraries,
• application frameworks,
• multimedia support, ...

• User applications are built for Android in Java.

10

Operators

Software

Vendors

Device

Manufacturers

11

Android’s Context: Mobile Market Player$

Stakeholders:

Mobile network operators want
to lock down their networks,
controlling and metering traffic.

Device manufacturers want to
differentiate themselves with
features, reliability, and price
points.

Software vendors want complete
access to the hardware to deliver
cutting-edge applications.

The Maturing Mobile Experience

Not so long ago … Today

1. Phone
2. Pager
3. PDA Organizer
4. Laptop
5. Portable music player
6. No Internet access /

limited access

1. Smartphone
2. Laptop (perhaps!)

12
Tomorrow ?

Electronic tools of a typical business warrior

The Maturing Mobile Experience

I want my 2015 smartphone to act as …

1. Phone
2. Pager
3. PDA Organizer
4. High Quality Camera (still & video)
5. Portable music player
6. Portable TV / Video Player / Radio
7. Laptop
8. Play Station
9. GPS
10. Golf Caddy (ball retriever too)
11. Book Reader (I don’t read, It reads to me)
12. Car / Home / Office Key
13. Remote Control (Garage, TV, …)
14. Credit Card
15. Cash on Demand
16. Cook, house chores
17. Psychologist / Mentor / Adviser
18. ????

13

Trying to answer: Tomorrow ?

Android vs. Competitors

14

1.Apple Inc.
2.Microsoft
3.Nokia
4.Palm
5.Research In Motion
6.Symbian

1515

The Size of
the Mobile
Market

http://gizmodo.com/5489036
/cellphone-overshare

[see appendix]

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Android Components (Stack)

• The Android stack includes a large array of
features for mobile applications.

• It would be easy to confuse Android with a
general purpose computing environment.

• All of the major components of a computing
platform are included.

16

Android Components

• Application framework enabling reuse and replacement of components

• Dalvik virtual machine optimized for mobile devices

• Integrated browser based on the open source WebKit engine

• Optimized graphics powered by a custom 2D graphics library; 3D graphics
based on the OpenGL ES specification (hardware acceleration optional)

• SQLite for structured data storage

• Media support for common audio, video, and still image formats (MPEG4,
H.264, MP3, AAC, AMR, JPG, PNG, GIF)

• GSM Telephony (hardware dependent)

• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

• Camera, GPS, compass, and accelerometer (hardware dependent)

• Rich development environment including a device emulator, tools for
debugging, memory and performance profiling, and a plugin for the
Eclipse IDE

17

Android Components

18

Android Components

19

Video 1/3: Android’s Architecture
Presented by Mike Cleron, Google Corp. (13 min)

Available at: http://www.youtube.com/watch?v=QBGfUs9mQYY

Android Components

20

Video 2/3: Application’s Life Cycle
Presented by Mike Cleron, Google Corp. (8 min)

Available at: http://www.youtube.com/watch?v=fL6gSd4ugSI&feature=channel

http://www.youtube.com/watch?v=fL6gSd4ugSI&feature=channel

Android Components

21

Video 3/3: Android’s API
Presented by Mike Cleron, Google Corp. (7 min)

Available at: http://www.youtube.com/watch?v=MPukbH6D-lY&feature=channel

http://www.youtube.com/watch?v=MPukbH6D-lY&feature=channel
http://www.youtube.com/watch?v=MPukbH6D-lY&feature=channel
http://www.youtube.com/watch?v=MPukbH6D-lY&feature=channel

Android Application Framework
Video:

Inside the

Android Application Framework
(about 52 min)

Presented by Dan Morrill – Google
At Google Developer Conference

San Francisco - 2008

Available at:

http://sites.google.com/site/io/inside-the-android-application-framework

22

Android is designed to be fast, powerful, and easy to develop for. This session
will discuss the Android application framework in depth, showing you the
machinery behind the application framework.

explains the life-cycle of an android apk. very good!

http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework

Android Components
Video:

An Introduction to Android
(about 52 min)

Presented by Jason Chen – Google

At Google Developer Conference

San Francisco - 2008

Available at:

http://www.youtube.com/watch?v=x1ZZ-R3p_w8

23

http://www.youtube.com/watch?v=x1ZZ-R3p_w8
http://www.youtube.com/watch?v=x1ZZ-R3p_w8
http://www.youtube.com/watch?v=x1ZZ-R3p_w8

Why use Linux for a phone?
• Linux kernel is a proven core platform.

• Reliability is more important than performance when it
comes to a mobile phone, because voice communication
is the primary use of a phone.

• Linux can help meet this requirement.

• Linux provides a hardware abstraction layer, letting the
upper levels remain unchanged despite changes in the
underlying hardware.

• As new accessories appear on the market, drivers can be
written at the Linux level to provide support, just as on
other Linux platforms.

24

Dalvik Virtual Machine

• User applications, as well as core Android
applications, are written in Java programming
language and are compiled into byte codes.

• Android byte codes are interpreted at runtime
by a processor known as the Dalvik virtual
machine.

25

Why another JavaVirtual Machine?

• Android bytecode files are logically equivalent
to Java bytecodes, but they permit Android to

– run its applications in its own virtual environment
that is free from Sun’s licensing restrictions and

– an open platform upon which Google, and
potentially the open source community, can
improve as necessary.

26

Dalvik Virtual Machine

Video (61 min)

Dalvik VM Internals

Presented by Dan Borstein

At Google Developer – 2008

San francisco

Available at:

http://www.youtube.com/watch?v=ptjedOZEXPM

27

http://www.youtube.com/watch?v=ptjedOZEXPM

Inside Android: Intents

• An important and recurring theme of Android
development is the Intent.

• An Intent in Android describes what you want to do.

• This may look like

– “I want to look up a contact record,” or

– “Please launch this website,” or

– “Show the Order Confirmation Screen.”

• Intents are important because they facilitate
navigation and represent the most important aspect
of Android coding.

28

Intents & IntentFilters

• An Intent is a declaration of need.

• An Intent is made up of various pieces including:
– desired action or service,
– data, and
– category of component that should handle the intent and

instructions on how to launch a target activity.

• An IntentFilter is a trigger, a declaration of capability and
interest in offering assistance to those in need.

• An IntentFilter may be generic or specific with respect to
which Intents it offers to service.

29

Intents & IntentFilters

• An intent is an abstract description of an operation to be
performed.

• Its most significant use is in the launching of activities, where
it can be thought of as the glue between activities.

• The primary pieces of information in an intent are:

30

Action Data

The general action to be
performed, such as:
ACTION_VIEW,
ACTION_EDIT,
ACTION_MAIN, etc.

The data to operate on, such as
a person record in the contacts
database, expressed as a Uri.

Intents & IntentFilters

31

Some examples of Intent’s action/data pairs are:

ACTION_VIEW content://contacts/1 -- Display information about the
person whose identifier is "1".
ACTION_DIAL content://contacts/1 -- Display the phone dialer with the
person filled in.
ACTION_VIEW tel:123 -- Display the phone dialer with the given number
filled in
ACTION_DIAL tel:123 -- Display the phone dialer with the given number
filled in.
ACTION_EDIT content://contacts/1 -- Edit information about the person
whose identifier is "1".
ACTION_VIEW content://contacts/ -- Display a list of people, which the
user can browse through.

Dissecting Intents

1. Component name The name of the component that should handle the intent (for
example "com.example.project.app.MyActivity1").

2. Action A string naming the action to be performed — or, in the case of broadcast
intents, the action that took place and is being reported (for example: ACTION_VIEW,
ACTION_CALL, ACTION_TIMEZONE_CHANGED, …).

3. Data The URI of the data to be acted on and the MIME type of that data (for example
tel:/216 555-1234 , "http://maps.google.com”, ...).

4. Category A string containing additional information about the kind of component that
should handle the intent (for example CATEGORY_BROWSABLE,

CATEGORY_LAUNCHER, …).

5. Extras Key-value pairs for additional information that should be delivered to the
component handling the intent.

6. Flags of various sorts.
32

Delivering Intents

• An Intent object is passed to

Context.startActivity() or Activity.startActivityForResult()

to launch an activity or get an existing activity to do something
new (asynchronous & synchronously respectively).

• An Intent object is passed to Context.startService() to initiate a
service or deliver new instructions to an ongoing service.

• An intent can be passed to Context.bindService() to establish a
connection between the calling component and a target
service. It can optionally initiate the service if it's not already
running.

33

Intent Resolution

Intents can be divided into two groups:

• Explicit intents designate the target component by its name,
typically used for an activity starting a subordinate service or
launching a sister activity.

• Implicit intents do not name a target (the field for the
component name is blank). Implicit intents are often used to
activate components in other applications. Late binding
applies.

Whenever possible Android delivers an explicit intent to an
instance of the designated target class.

34

Example of Intent (1)

• Following fragments calls an Intent whose job is to
invoke a built-in task (ACTION_VIEW) and explore the
Contacts available in the phone.

Intent myIntent = new Intent(

Intent.ACTION_VIEW,

Uri.parse("content://contacts/people"));

startActivity(myIntent);

35

Example of Intent (1)

Intent uses
ACTION_VIEW
to see
Contacts.

36

Example of Intent (1)

• Complete code to see Contacts.

37

package matos.cis493;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;

public class AndDemo1 extends Activity {
/** show contact list */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Intent myIntent = new Intent(Intent.ACTION_VIEW,Uri.parse("content://contacts/people"));
startActivity(myIntent);

}
}

Example of Intent (2)

• Following Intent uses built-in task (ACTION_VIEW) to
explore a web page

(see new Uri value)

Intent myIntent = new Intent(

Intent.ACTION_VIEW,

Uri.parse("http://www.google.com"));

startActivity(myIntent);

38

Example of Intent (3)

• Following Intent uses built-in task (ACTION_VIEW) to
make a phone call

(see new Uri value)

Intent myIntent = new Intent(

Intent.ACTION_VIEW,

Uri.parse("tel:/216 555-1234"));

startActivity(myIntent);

39

IntentFilters

• The IntentFilter defines the relationship between the
Intent and the application.

• IntentFilters can be specific to the data portion of
the Intent, the action portion, or both.

• IntentFilters also contain a field known as a category.
A category helps classify the action.

• For example, the category named

CATEGORY_LAUNCHER

instructs Android that the Activity containing this
IntentFilter should be visible in the home screen.

40

IntentFilters

• When an Intent is dispatched, the system evaluates
the available Activities, Services, and registered
BroadcastReceivers and routes the Intent to the most
appropriate recipient (see next Figure).

41

IntentFilters

42

IntentFilters

43

• To inform the system which implicit intents they can
handle, activities, services, and broadcast receivers can
have one or more intent filters.

• Each filter describes a capability that the component is
willing to receive.

• An explicit intent is always delivered to its target, no matter
what it contains; the filter is not consulted.

• But an implicit intent is delivered to a component only if it
can pass through one of the component's filters.

IntentFilters

44

• IntentFilters are often defined in an application’s
AndroidManifest.xml with the <intent-filter> tag.

<intent-filter . . . >
<action android:name="code android.intent.action.MAIN" />
<category android:name="code android.intent.category.LAUNCHER" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:type="video/mpeg" android:scheme="http" . . . />
<data android:type="audio/mpeg" android:scheme="http" . . . />

. . .
</intent-filter>

Android Applications

• Each Android application runs in its own Linux
process.

• An application consists of a combination of software
components including:

– Activities

– Services

– Broadcast Receivers

– Content Providers

45

Android Applications

Structure of
a typical
Android
Application

46

Android Services
• A Service is an application component that runs

in the background, not interacting with the user,
for an indefinite period of time.

• Each service class must have a corresponding
<service> declaration in its package's
AndroidManifest.xml.

• Services can be started/stopped with
– Context.startService() and

– Context.bindService().

– stopService(…) and unbindService(…)

47

Android Services

• Services, like other application objects, run in
the main thread of their hosting process.

• This means that, if your service is going to do
any CPU intensive (such as MP3 playback) or
blocking (such as networking, RSS exchange)
operations, it should spawn its own thread in
which to do that work

48

Android Services
Service1 Class

package matos.service;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.util.Log;

public class Service1 extends Service implements Runnable {

private int counter = 0;

@Override

public void onCreate() {

super.onCreate();

Thread aThread = new Thread(this);

aThread.start();

}

public void run() {

while (true) {

try {

Log.i("service1", "service1 firing : # " + counter++);

Thread.sleep(10000); //this is where the heavy-duty computing occurs

} catch (Exception ee) {

Log.e("service1", ee.getMessage());

}

}

}

@Override

public IBinder onBind(Intent intent) {

return null;

}

} 49

Android Services
// Service1Driver

package matos.service;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

public class Service1Driver extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// invoking the service

Intent service1Intent = new Intent(this, Service1.class);

startService(service1Intent);

}

}// Service1Driver

50

Android Services
Service1Demo Manifest
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="matos.service"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".Service1Driver"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<service android:name="Service1" android:enabled="true" >
</service>

</application>
<uses-sdk android:minSdkVersion="3" />

</manifest>

51

Android Services

Debugging - Log Cat

07-01 02:49:46.097: INFO/ActivityManager(583): Displayed activity matos.service /.Service1 Driver

07-01 02:49:51.277: DEBUG/dalvikvm(724): GC freed 1575 objects / 81280 bytes in 138ms

07-01 02:49:55.831: INFO/service1(767): service1 firing : # 1

07-01 02:50:05.839: INFO/service1(767): service1 firing : # 2

07-01 02:50:15.847: INFO/service1(767): service1 firing : # 3

07-01 02:50:25.857: INFO/service1(767): service1 firing : # 4

52

Android Broadcast Receiver
What is a BROADCASTRECEIVER?

• If an application wants to receive and respond to a global event, such as the
phone ringing or an incoming text message, it must register as a BroadcastReceiver.

• An application registers to receive Intents by announcing in the
AndroidManfest.xml file its IntentFilters.

• If the receiver is registered in the AndroidManifest.xml file, it does not have to
be running in order to be triggered.

• When the global event occurs, the application is started automatically upon
notification of the triggering event. All of this housekeeping is managed by the
Android OS itself.

• An application may register at runtime via the Context class’s registerReceiver
method.

53

Android Broadcast Receiver
BROADCASTRECEIVER and UI.

• Like Services, BroadcastReceivers do not have a UI.

• Of even more importance, the code running in the onReceive
method of a BroadcastReceiver should make no assumptions
about persistence or long-running operations.

• If the BroadcastReceiver requires more than a trivial amount
of code execution, it is recommended that the code initiate a
request to a Service to complete the requested functionality.

54

Android Broadcast Receiver
BROADCASTRECEIVER

55

sendBroadcast(…)

Some Activity
onReceive(…)

BroadcastReceiver

onReceive(…)

BroadcastReceiver

onReceive(…)

BroadcastReceiver

Android Broadcast Receiver

Intents vs. Broadcasts

– Starting an Activity with an Intent is a foreground
operation that modifies what the user is currently
interacting with.

– Broadcasting an Intent is a background operation
that the user is not normally aware of.

56

Android Broadcast Receiver
Type of Broadcasts
There are two major classes of broadcasts that can be received:

• Normal broadcasts (sent with sendBroadcast) are completely
asynchronous. All receivers of the broadcast are run in an undefined
order, often at the same time. This is more efficient, but means that
receivers cannot use the result or abort APIs included here.

• Ordered broadcasts (sent with sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in
turn, it can propagate a result to the next receiver, or it can
completely abort the broadcast so that it won't be passed to other
receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter; receivers
with the same priority will be run in an arbitrary order.

57

Android Broadcast Receiver
Broadcast Receiver Life Cycle

• A process that is currently executing a BroadcastReceiver (that is,
currently running the code in its onReceive(Context, Intent) method) is
considered to be a foreground process and will be kept running by the
system except under cases of extreme memory pressure.

• Once you return from onReceive(), the BroadcastReceiver is no longer
active, and its hosting process is only as important as any other application
components that are running in it.

• This means that for longer-running operations you will often use a Service
in conjunction with a BroadcastReceiver to keep the containing process
active for the entire time of your operation.

58

Android Broadcast Receiver
Broadcast Receiver Example (1/5). Intercept arriving SMS

package matos.broadcastreceiver;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.util.Log;

import android.app.Activity;

import android.os.Bundle;

public class MySMSMailBox extends Activity {

// intercepts reception of new text-messages

59

Android Broadcast Receiver
Broadcast Receiver Example (2/5). Intercept arriving SMS

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// define instance of local broadcast receiver

MySMSMailBoxReceiver mySmsReceiver = new MySMSMailBoxReceiver();

// receiver's filter will accept event: ...SMS_RECEIVED

IntentFilter filter = new IntentFilter(

"android.provider.Telephony.SMS_RECEIVED");

// tell Android OS this receiver is ready to go

registerReceiver(mySmsReceiver, filter);

}

60

Android Broadcast Receiver
Broadcast Receiver Example (3/5). Intercept arriving SMS

// this is the custom made broadcast receiver. Its onReceive method

// is fired when the filter matches the SMS_RECEIVED event

public class MySMSMailBoxReceiver extends BroadcastReceiver {

public static final String tag = "<<< MySMSMailBox >>>";

@Override

public void onReceive(Context context, Intent intent) {
Log.i(tag, "onReceive");

// checking global event signaling arrival of text-message

if (intent.getAction().equals(

"android.provider.Telephony.SMS_RECEIVED")) {

Log.i(tag, "Found our SMS Event!");

// you have intercepted the SMS

// do something interesting with it. Bye!

}

}// onReceive

} // BroadcastReceiver

}

61

Android Broadcast Receiver
Broadcast Receiver Example (4/5). Intercept arriving SMS

62

Android Broadcast Receiver
Broadcast Receiver Example (5/5). Intercept arriving SMS

63

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="matos.broadcastreceiver"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".MySMSMailBox"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-permission android:name="android.permission.RECEIVE_SMS" />

<receiver android:name="MySMSMailBoxReceiver" >

<intent-filter>

<action

android:name = "android.provider.Telephony.SMS_RECEIVED"/>

</intent-filter>

</receiver>

<uses-sdk android:minSdkVersion="3" />

</manifest>

Android Content Provider
• Content providers store and retrieve data and make it

accessible to all applications.

• They are the only way to share data across Android
applications. There's no common storage area that all Android
packages can access.

• Android ships with a number of content providers for
common data types (audio, video, images, personal contact
information, and so on).

64

Android Content Provider
• ContentProviders are a data layer providing data abstraction

for its clients and centralizing storage and retrieval routines in
a single place.

• A ContentProvider may provide data to an Activity or Service
in the same application’s space as well as an Activity or
Service contained in other applications.

• A ContentProvider may use any form of data storage
mechanism available on the Android platform, including files,
SQLite databases, or even a memory-based hash map if data
persistence is not required.

65

Android Content Provider

66

Android Content Provider
The data model

• Content providers expose their data as a simple table on a
database model, where each row is a record and each column
is data of a particular type and meaning.

• For example, information about people and their phone
numbers might be exposed as follows:

67

Android Content Provider
URIs

• Each content provider exposes a public URI that uniquely identifies its data set.

• A content provider that controls multiple data sets (multiple tables) exposes a
separate URI for each one.

• All URIs for providers begin with the string "content://".

• Android defines CONTENT_URI constants for all the providers that come with the
platform. For example

– android.provider.Contacts.Phones.CONTENT_URI
android.provider.Contacts.Photos.CONTENT_URI

– android.provider.CallLog.Calls.CONTENT_URI
android.provider.Calendar.CONTENT_URI

• The ContentResolver method takes an URI as its first argument. It's what identifies
which provider the ContentResolver should talk to and which table of the provider
is being targeted.

68

Android Content Provider
Querying a Content Provider

• You need three pieces of information to query a content
provider:
– The URI that identifies the provider

– The names of the data fields you want to receive

– The data types for those fields

• If you're querying a particular record, you also need the ID for
that record.

• A query returns a Cursor object that can move from record to
record and column to column to read the contents of each
field. It has specialized methods for reading each type of data.

69

Android Content Provider
Example: Posting a query to the Contact list (1/2)

package matos.cis493;

import android.app.Activity;

import android.net.Uri;

import android.os.Bundle;

import android.widget.EditText;

import android.widget.Toast;

import android.provider.Contacts.People;

import android.content.ContentUris;

import android.database.Cursor;

public class AndDemo1 extends Activity {

/** queries contact list */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// Use the ContentUris method to produce the base URI for the contact with _ID == 23.

Uri myPerson1 = ContentUris.withAppendedId(People.CONTENT_URI, 23);

// use the "people" content provider to explore all your contacts

Uri myPerson2 = Uri.parse("content://contacts/people");

// Then query for this specific record using method: managedQuery

// args: (Uri uri, String[] projection, String selection,

// String[] selectionArgs, String sortOrder)

Cursor cur = managedQuery(myPerson2, null, null, null, null);

// do something with the cursor here

}

}

70

Android Content Provider
Example: Posting a query to the Contact list (2/2)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="matos.cis493"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".AndDemo1"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

<uses-permission android:name="android.permission.READ_CONTACTS">

</uses-permission>

</manifest>

71

Android Manifest xml File
• Every application must have an

AndroidManifest.xml file

(with precisely that name) in its root
directory.

• The manifest presents essential
information about the application to
the Android system, information the
system must have before it can run any
of the application's code.

72

Android Manifest xml File

<action>
<activity>
<activity-alias>
<application>
<category>
<data>
<grant-uri-permission>
<instrumentation>
<intent-filter>
<manifest>
<meta-data>

<permission>
<permission-group>
<permission-tree>
<provider>
<receiver>
<service>
<uses-configuration>
<uses-library>
<uses-permission>
<uses-sdk>

73

These are the only legal elements; you cannot add your own elements or attributes.

Android Manifest xml File
Among other things, the manifest does the following:

– It names the Java package for the application. The package name serves as a unique identifier
for the application.

– It describes the components of the application — the activities, services, broadcast receivers,
and content providers that the application is composed of.

– It names the classes that implement each of the components and publishes their capabilities
(for example, which Intent messages they can handle). These declarations let the Android
system know what the components are and under what conditions they can be launched.

– It determines which processes will host application components.

– It declares which permissions the application must have in order to access protected parts of
the API and interact with other applications.

– It also declares the permissions that others are required to have in order to interact with the
application's components.

– It lists the Instrumentation classes that provide profiling and other information as the
application is running. These declarations are present in the manifest only while the
application is being developed and tested; they're removed before the application is
published.

– It declares the minimum level of the Android API that the application requires.

– It lists the libraries that the application must be linked against.

74

Android Manifest xml File
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="matos.earthquake"

android:versionCode="1"

android:versionName="1.0.0">

<application android:icon="@drawable/yellow_circle" android:label="@string/app_name">

<activity android:name=".AndQuake"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".SatelliteMapping"> </activity>

<service android:name="AndQuakeService" android:enabled="true" >

</service>

<receiver android:name="AndQuakeAlarmReceiver" >

<intent-filter>

<action

android:name = "ALARM_TO_REFRESH_QUAKE_LIST"/>

</intent-filter>

</receiver>

</application>

<uses-library android:name="com.google.android.maps" />

<uses-permission android:name="android.permission.INTERNET" />

</manifest>

75

Example. Currency converter

Implementing a simple currency converter:

USD – Euro – Colon (CR)

Note. Naive implementation using the rates

1 Costa Rican Colon = 0.001736 U.S. dollars

1 Euro = 1.39900 U.S. dollars

76

Example. Currency converter

77

Example. Currency converter

78

package matos.currencyconvereter;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class Currency1 extends Activity {

// naive currency converter from USD to Euros & Colones

final double EURO2USD = 1.399;

final double COLON2USD = 0.001736;

// GUI widgets

Button btnConvert;

Button btnClear;

EditText txtUSDollars;

EditText txtEuros;

EditText txtColones;

Example. Currency converter

79

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// bind local controls to GUI widgets

txtUSDollars = (EditText)findViewById(R.id.txtUSDollars);

txtUSDollars.setHint("Enter US dollars");

txtEuros = (EditText)findViewById(R.id.txtEuros);

txtColones = (EditText)findViewById(R.id.txtColones);

// attach click behavior to buttons

btnClear = (Button)findViewById(R.id.btnClear);

btnClear.setOnClickListener(new OnClickListener() {

// clear the text boxes

@Override

public void onClick(View v) {

txtColones.setText("");

txtEuros.setText("");

txtUSDollars.setText("");

}

});

Example. Currency converter

80

// do the conversion from USD to Euros and Colones

btnConvert = (Button) findViewById(R.id.btnConvert);

btnConvert.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

try {

String usdStr = txtUSDollars.getText().toString();

double usd = Double.parseDouble(usdStr);

String euros = String.valueOf(usd / EURO2USD);

String colones = String.valueOf(usd / COLON2USD);

txtEuros.setText(euros);

txtColones.setText(colones);

} catch (Exception e) {

Toast.makeText(v.getContext(), "Invalid data - try again" ,

Toast.LENGTH_SHORT).show();

}

}

});// setOnClick...

}// onCreate

}// class

Example. Currency converter

81

Example. Currency converter

82

Resource: res/ layout/main.xml (1/2)

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

android:id="@+id/widget47"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical"

xmlns:android="http://schemas.android.com/apk/res/an
droid"

>

<TextView

android:id="@+id/caption1"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Currency Converter v0.01"

android:textSize="18sp"

android:textStyle="bold"

>

</TextView>

<TextView

android:id="@+id/greenFiller1"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:background="#ff006666"

>

</TextView>

<AbsoluteLayout

android:id="@+id/absLayout"

android:layout_width="316px"

android:layout_height="308px"

android:background="#ff003399"

>

<TextView

android:id="@+id/usdCaption"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="US Dollars"

android:layout_x="40px"

android:layout_y="15px"

>

</TextView>

<EditText

android:id="@+id/txtUSDollars"

android:layout_width="150px"

android:layout_height="wrap_content"

android:layout_x="130px"

android:layout_y="10px"

>

</TextView>

Example. Currency converter

83

Resource: res/ layout/main.xml (2/2)

<EditText

android:id="@+id/txtEuros"

android:layout_width="150px"

android:layout_height="wrap_content“

android:layout_x="130px"

android:layout_y="70px"

>

</EditText>

<TextView

android:id="@+id/colonCaption"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Colones(CR)"

android:layout_x="40px"

android:layout_y="135px"

>

</TextView>

<EditText

android:id="@+id/txtColones"

android:layout_width="150px"

android:layout_height="wrap_content“

android:layout_x="130px"

android:layout_y="130px"

>

</EditText>

<Button

android:id="@+id/btnConvert"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=" Convert "

android:layout_x="10px"

android:layout_y="190px"

>

</Button>

<Button

android:id="@+id/btnClear"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=" Clear "

android:layout_x="90px"

android:layout_y="190px"

>

</Button>

</AbsoluteLayout>

</LinearLayout>

Example. Currency converter

84

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="matos.currencyconvereter"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"
android:label="@string/app_name">

<activity android:name=".Currency1"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

Additional Resources

Google Developer Conference

San Francisco – 2009

Web page: http://code.google.com/events/io/

85

http://code.google.com/events/io/

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

86

4 bn
Mobile Phone

worldwide
(half the

population of the
planet)

1.5bn
Televisions
worlwide

1.4bn
Internet users

worldwide

480 m
Papers

2009 Mobile market
compared to other
technologies

48.7%
News and Sport

Information
20.21%
Social

Networking

11.94%
Entertainment

News

7.13%
Traded Stocks and

Financial

6.69%
Movie information

5.33%
Business Directory

2009
Content being
accessed from
mobiles

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

$600 bn
Voice

$130 bn
Messaging

$70 bn
Non-messaging

2009 Mobile Revenue

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

87

10.99%
MySpace Mobile

9.37%
MyXer

5.03%
WeeWorld

4.7%
Cricket

2.98%
Phone Zoo

2.53%
Yahoo Mobile

2.38%
Fun For Mobile

2.38%
Thumplay Offers

19.39%
Mocospace

2009 - Top
visited Mobile
websites

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

88

97.57%
Google

1.94% Yahoo

0.63% Other

0.25% Ask

0.11% MSM

2.43%

2009 Mobile Search Market

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

89

49.5%
iPhone

16%
RIM Blackberry

6%
Palm Centro

5.2%
HTC Dream

23%
of market made

up of
traffic from other

smartphones

Top 5 Smartphone mobile web traffic in the US

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

90

51%
Symbian

19%
RIM

13%
iPhone

9%
Windows

6% Other

2%
Android

2009
Mobile Operating System
Market Share Worldwide

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

91

45%
Nokia

19%
RIM

13%
Apple

14%
Other

6%
HTC

3%
Fujitsu

2009
Smartphone
Sales Worldwide

46%
use both PC
and Mobile

29%
from PC

exclusively

25%
from Mobile
exclusively

2009
How Internet
is Accessed

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. The Sixe of the Mobile Market – 2009
Extracted from: http://gizmodo.com/5489036/cellphone-overshare

92

3.05 bn
SMS users worldide
2.6 SMS per day per

person world
average

the most used used
communication

tool of the planet

600 m
IM users

worldwide

1.3 bn
Email users
worldwide

2009
How SMS compares
as a text communication
application

http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare
http://gizmodo.com/5489036/cellphone-overshare

Appendix. Cell-Phone Diffusion

93

Lyza Lyth
Mama Justine & Children

Tanzania, October 2010

Questions ????

94

