Learn

Android Studio

Build Android Apps Quickly and Effectively

Adam Gerber | Clifton Craig

Apress

This book was purchased by tanakasy@fukuoka-edu.ac.jp

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AuthOrs........cccmummimmmmee s ————————— Xvii
About the Technical ReVIEWETsvcsssssmssssssssmssssmssssssssssssssssssssssssssssssssssssnsassnsass Xix
Acknowledgments........cccciuiissssmmmnmmmmmmmssssssssssnsnmeessssssssssssnsseesssssssssnnnnnnnsessssssnnnnnnns XXi
INtroducCtioncuuieemmssennmsssnnssssnsmsssnnmssannssssnnssssnnssssnsnsssnnssssnnnsssnnnsssnnssssnnnsssnnnsssnnns Xxiii
Chapter 1: Introducing Android StUdi0.........ccccemmmmmnrrrmssssssssmsssnnnesssssssssssssssssesssssnns 1
Chapter 2: Navigating Android Studiocusccemrinssenmnnssssssnmmssssssemssssssessssnnn 27
Chapter 3: Programming in Android Studiocccuccemmssanmmssansmsssnsssssssssssssssssnnssssns 45
Chapter 4: Refactoring Code.........cccciummssmmmmmmmsssnnmmmssssssnmsssssssnssssssssnssssssssnsssssnnnnnns 69
Chapter 5: Reminders Lab: Part 1..........ccccinnnemmmnnnnssssmmmmsssssmmmssssssmssssssssssssnns 89
Chapter 6: Reminders Lab: Part 2...........ccccuneemmnnnsemnmmmnsssnmmmsssssmmssssssssssssnns 121
Chapter 7: Introducing Gitccccmmisnemmmmmmssnnnmmmsssssmmssssssmmsssssnssssssssnesssssnn 143
Chapter 8: Designing LayoutS.......ccccuussemmmmmsssnnsnmsssssssssssssssssssssssssssssssssnssssssnnnnns 187
Chapter 9: Currencies Lab: Part 1..........cccccieemmmnnsemnmmmsssnmmmsssssmmssssnsssssssns 241
Chapter 10: Currencies Lab: Part 2............ccccniemmnsmmmnnsesmnsssssmsssssssssssssssesssses 267
Chapter 11: Testing and AnalyZing........ccovunssennmmssssnnnmmssssssnssssssssnssssssnsnsssssnnnnnss 297
Chapter 12: DebUgging......ccucccurumissemnmmmsssansnmsssssnsnsssssansnssssssnsnsssssansnssssssnsnssssnnnns 313

vi

Contents at a Glance

Chapter 13: Gradle.....cccccerrrrrrmmmsssssnnnsnsmmsssmsssssssssssssssssssssssssssssssssssssssnnnnsssssnsssssnn 339
Chapter 14: More SDK TOOIScoceemeenmmmssnsnnssssssssssns 371
Chapter 15: Android Wear Lab........ccccuseemmmmnsssesnmmssssssmsssssssnsssssssssssssssssssssssssnns 407
Chapter 16: Customizing Android StUdioc.cccsmssammmsssnsmsssnsssssnsssssnsssssnnssssanssss 431

Introduction

Around 530 million years ago, during an age geologists call the Cambrian explosion, a

wide variety of species including all the phyla that exist today burst into existence within as
little as 10 million years—a mere flash in geological time. Scientists continue to marvel at
this phenomenon, and Darwin himself suggested that the Cambrian explosion happened

so swiftly that it might well cast doubt on his theory of natural selection. Today we are
experiencing the technological equivalent of the Cambrian explosion. The U.S. Bureau of Labor
Statistics predicts that a person graduating high school today will have 11 jobs in her lifetime,
and much of this career transience can be attributed to the pace of technological change.’

Technology begets more technology, and new technologies proliferate with ever-increasing
speed. Some of these new technologies will survive beyond a few years, but most will

not. There is little worse than investing time and energy in acquiring a new skill that is
obsolete on arrival or whose utility is short-lived. We wrote this book because we believe
that the tools and technologies covered herein will endure and that they are well worth your
investment.

Small Is Beautiful

Moore’s Law, which states that processing power doubles approximately every 18 months,
is relentless. Over the past few years, laptop computers have achieved performance

parity with their larger desktop cousins. Laptops and notepad computers accounted for

81 percent of PC sales in 2014, and sales are projected to increase at the expense of
desktop sales, which are conversely projected to decline. The brilliance of this trend is that
no individual or group has the power to arrest or reverse it—such is the power of economic
forces, which are the result of aggregate individual choices. Laptops will be the tool of
choice for knowledge workers for roughly the next ten years. However, a silent revolution is

http://online.wsj.com/news/articles/SB10001424052748704206804575468162805877990.
iSource: Forrester Research eReader Forecast, 2010 to 2015 (US).

xxiii

http://online.wsj.com/news/articles/SB10001424052748704206804575468162805877990

Xxiv Introduction

currently afoot that will soon topple the almighty laptop. Around 2025, or possibly sooner,
our smartphones will achieve performance parity with our laptops—which is to say that

the larger form-factor will no longer afford any performance advantages over the smaller.
Ultimately, our mobile computer (MC) will be used for the vast majority of computing
applications, even those applications that you and | can only imagine doing on our laptops
today. This revolution is just as predictable and just as certain as the one that overthrew the
desktop. In the meantime, you can expect your MC (in other words, your smartphone or
tablet) to start functioning in ways that resemble your laptop, including the ability to dock to
peripherals such as keyboards, monitors, and mice.

The personal computer (PC) age is coming to a close, but the MC age will actually be far
more personal. Soon a whole host of new wearable devices such as watches, glasses, and
shoes will be available. We envision a day in the not-too-distant future in which we will wear
our computers on our bodies and dock to monitors, keyboards, and mice wherever those
peripherals are available. This will truly be an age of personal computing, though we are not
likely to call it that.

Android Advantages

If you aspire to become an Android developer, you’ve made an excellent choice. Billions of
people in the developing world will be coming online in the next decade. For most of these
people, their first computers will be smartphones, and most of these smartphones will be
powered by Androidi. There’s good reason for our optimism and already a lot of historical
data from which we can extrapolate. Gartner Group projects that 1.25billion Android devices
will be sold in 2015". At the time of this writing, Android accounts for over three-quarters

of the Chinese market alone’, and Chinese consumers are prepared to make staggeringly
large investments in mobile devices, some spending as much as 70 percent of their monthly
salary on a new mobile device because connectivity is a prerequisite for participation in the
global economy." China is the largest market in sheer volume, but we can observe similar
trends across the developing world. Furthermore, because the Android OS is open source
and free, it is almost always the first choice among manufacturers of TV consoles, gaming
systems, augmented reality systems, and other electronic devices, of which there are many.

Android will continue to consolidate its dominant global market position for several
reasons. Android’s modular architecture allows for a wide variety of configurations and
customizations. All the core applications that ship standard with Android devices are
interchangeable with any number of third-party applications, and that includes applications

http://news.yahoo.com/android-projected-own-smartphone-market-next-four-
years-213256656.html, http://www.idc.com/getdoc.jsp?containerId=prUS24302813

Myww . bbc. co.uk/news/technology-25632430.

YReport: Windows Phone overtakes iOS in Italy and makes progress in Europe - The Next Web.
(n.d.). Retrieved from http://thenextweb.com/insider/2013/11/04/report-windows-phone-over-
takes-ios-in-italy-and-makes-progress-in-europe/#!pSdH1.

iReport: Windows Phone overtakes iOS in Italy and makes progress in Europe - The Next Web.
(n.d.). Retrieved from http://thenextweb.com/insider/2013/11/04/report-windows-phone-over-
takes-ios-in-italy-and-makes-progress-in-europe/#!pSdH1.

http://news.yahoo.com/android-projected-own-smartphone-market-next-four-years-213256656.html
http://news.yahoo.com/android-projected-own-smartphone-market-next-four-years-213256656.html
http://www.idc.com/getdoc.jsp?containerId=prUS24302813
http://www.bbc.co.uk/news/technology-25632430
http://thenextweb.com/insider/2013/11/04/report-windows-phone-overtakes-ios-in-italy-and-makes-progress-in-europe/%23!pSdH1
http://thenextweb.com/insider/2013/11/04/report-windows-phone-overtakes-ios-in-italy-and-makes-progress-in-europe/%23!pSdH1
http://thenextweb.com/insider/2013/11/04/report-windows-phone-overtakes-ios-in-italy-and-makes-progress-in-europe/%23!pSdH1
http://thenextweb.com/insider/2013/11/04/report-windows-phone-overtakes-ios-in-italy-and-makes-progress-in-europe/%23!pSdH1

Introduction XXV

like the phone dialer, the e-mail client, the browser, and even the OS navigator. Android
devices are available in an amazing variety of shapes and functions. There are Android
augmented reality glasses, Android game consoles (of which Ouya is the most notable),
Android watches, Android tablets of every conceivable size, and, of course, Android
smartphones.

Android’s core technologies compare favorably to those of its principal competitors.
Android’s inclusive and open source charter has attracted a large and impressive collection
of allies, including Samsung, which is among the most innovative companies in the world.
A free'i and customizable operating system means that Android device manufacturers

can focus on bringing products to market with unrivaled value, and the highly competitive
Android device market continues to produce inexpensive, high-quality, and architecturally
open devices.

Android Studio Is Revolutionary

As a knowledge worker, your choice of tools can mean the difference between struggling
and thriving. We’re always searching for tools that increase productivity and automate work.
Certain tools have benefits that are so apparent that one adopts them immediately. Android
Studio is one such tool.

We were introduced to Android Studio just a few days after its prerelease at Google I/O

in 2013. Prior to that time, we had both been using Android Developer Tools (ADT) both
professionally and in the classroom. ADT is an Android development environment built upon
the opensource integrated development environment (IDE) called Eclipse. While Android
Studio was still in early prerelease, we both began to use Android Studio professionally.

Android Studio is a collaboration between JetBrains and Google. Android Studio is built atop
JetBrain’s IntelliJ, and so its functionality is a superset of IntelliJ. Most anything you can do
with IntelliJ, you can also do in Android Studio. Android Studio is revolutionary because it
streamlines the Android development process and makes Android development far more
accessible than it has previously been"i. Android Studio is now the official IDE for Android.

The Android Tools Ecosystem

Android is a technology platform with its own ecosystem of tools to support it. After Android
Studio, the next most important tool in the Android ecosystem is Git. Git is a distributed
source-control tool that is quickly becoming the standard not only for mobile development,
but for software engineering in general. We have never worked on a mobile development
project that does not use Git for version control. Git could very well be the subject of another

Vilt's important to note that while Google has forgone license fees from Android, mobile
technology proliferation in general tends to buoy Google’s advertising revenue.

viDeveloping Android apps requires a solid understanding of Java. Nothing as powerful as Android
is easy, but using Android Studio will make the task of developing Android apps easier.

xxvi Introduction

book, but fortunately you needn’t understand all of Git’s functionality to be proficient at using
it. Android Studio has an excellent, full-featured, and integrated Git tool with an impressive
GUI interface. In this book, we cover the features you need to know to be an effective

Git user and then point you to resources for additional study if you wish to deepen your
knowledge of this indispensible tool.

Another important tool in the Android ecosystem is Gradle. Gradle is a build tool similar to
Ant and Maven that allows you to manage libraries and library projects, run instrumentation
tests, and create conditional builds. Android Studio does a good job of managing libraries
all on its own, but Gradle makes this task easy and portable. As with Git, Gradle is fully
integrated into Android Studio, which ships with an impressive array of views that allow the
user to inspect Gradle files graphically and examine the output of a Gradle build process.

Android and Java

If you attempt to develop Android apps in Android Studio without first having a good
understanding of Java, you will be frustrated. Java is an extremely useful and popular
programming language for many reasons. Perhaps the most important reason for Java’s
popularity is that Java is memory managed. Memory managed means that the programmer
does not need to be concerned with deallocating memory off the heap, nor with worrying
about memory leaks. Programmers developing in a memory-managed environment tend

to be more productive, and their programs tend to have fewer runtime errors. Like Java,
Android is a memory-managed programming environment. Managing memory turns out to
be such a good idea that both Microsoft and Apple have adopted this model for their mobile
development platforms.

Switching from ADT/Eclipse

If you are an experienced Android developer and are used to programming with ADT, you
are in for a pleasant surprise. Thankfully, all the SDK tools such as DDMS and Hierarchy
Viewer are still available, and you will find them easily accessible from within Android Studio.
If you're an ADT user, you probably find yourself continuously cleaning and rebuilding your
projects in order to synchronize your resources with your source code (the dreaded R. java
synchronization error). In the months that we have been using Android Studio, we have
never been troubled with this problem. If you’re an experienced ADT user, then in order

to get up to speed with Android Studio, you will need to learn a few keyboard shortcuts,
familiarize yourself with Gradle, and reorient yourself to Android Studio’s presentation logic.
Altogether, this is a small price to pay for the power and pleasure of Android Studio.

*Xcode, which is the IDE for developing iOS apps, recently included a feature called Automatic
Reference Counting whereby the compiler generates code that manages memory automatically.
Microsoft C# is a memory-managed programming environment inspired by Java.

Introduction xxvii

Conventions Used in This Book

Android Studio is remarkably consistent across operating systems. In fact, the user
interfaces on Windows and Linux are almost identical. However, Mac OS users will find that
some of the locations of their menus and some keyboard shortcuts are different. We use
Windows when covering subjects that require OS navigation. However, when we indicate a
keyboard shortcut, we include both the Windows-Linux and Mac shortcuts separated by a
pipe (for example, Ctrl+K | Cmd+K). When appropriate, we include notes, links, and other
resources for Mac users.

Chapter

Introducing Android Studio

This chapter walks you through installing and setting up your development environment

so you can follow the examples and labs in this book. First, you will install an essential
prerequisite component called the Java Development Kit (JDK). Then you will download

and install Android Studio as well as the Android Software Development Kit (SDK), which is
a suite of software tools required to build Android apps. We will show you how to use the
New Project Wizard to create a simple project called HelloWorld. Last, we will show you how
to establish a connection to both an Android Virtual Device (AVD) and a physical Android
device. By the end of this chapter, you will have everything you need to start developing
apps in Android Studio.

Installing the Java Development Kit on Windows

This section pertains to Windows users. If you’re a Mac user, skip ahead to the section titled
“Installing the Java Development Kit on Mac.” Android Studio uses the Java tool chain to
build, so you need to make sure that you have the Java Development Kit (JDK) installed on
your computer before you start using Android Studio. It's quite possible that you already
have the JDK installed on your computer, particularly if you’re a seasoned Android or Java
developer. If you already have the JDK installed on your computer, and you’re running JDK
version 1.6 or higher, then you can skip this section. However, you may want to download,
install, and configure the latest JDK anyway. You can download the JDK from the following
Oracle site:

www.oracle.com/technetwork/java/javase/downloads/index.html

When you land on this page, click the Java Download button, shown in Figure 1-1.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2 CHAPTER 1: Introducing Android Studio

Sign In/Register Help Country ¥ Communities v |ama.

ORACLE

Products Solutions Downloads Store

Oracle Technology Network > Java > Java SE > Downloads

=]

Overview Downloads Documentation Community

Java SE Downloads

Java SE Advanced & Suite

«

- 5
Java Embedded -—> Iava -
Java DB -
Web Tier

x DOWNLOAD #
Java Card —_—
Java TV Java Platform (JDK) 8u25
New to Java | Java Platform, Standard [
Communit

il Java SE 8u25

Java Magazine This release includes important security fices. Oracle strongly

users upgrade to this release.
Learn more »

Installation Instructions

» Release Notes

* Oracle License

» Java SE Products

« Third Party Licenses

Certified System Configurations
[

Figure 1-1. The Java Download button on the Java Downloads page

Downloading the JDK on Windows

The next step in the installation, shown in Figure 1-2, requires that you accept a license
agreement by clicking the Accept License Agreement radio button. Then you must choose
the appropriate JDK for your operating system. If you're running Windows 7 or Windows 8,
you should click the file link to the right of the Windows x64 label, also shown in Figure 1-2.
Oracle makes frequent release updates to the JDK. By the time this book goes to press, a
newer version of the JDK will almost certainly be available, so please be sure to download
the latest version. Wait for the installation file to download. This file is usually around 125MB,
so the download shouldn’t take long.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 1: Introducing Android Studio 3

New to Java

(=
<
=
=]
{rl

= Java Developer Day hands-on workshops (free) and other events

inity

“
2

« Java Magazine
Java Magazine

JDK MD5 Checksum

Looking for JOK 8 on ARM?
JOK 8 for ARM downloads have moved to the JOK 8 for ARM download page.

|

.
b
4
Javane
s
s
s

Java SE Development Kit 8u25

You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
' Accept Li Ag * Decline License Ag
Product / File Description | File Size | Download
Linux x86 13524 MB ¥ jdk-8u25-lnux-i586.rpm
Linux x86 15488 MB # jdk-8u25-lnux-iS86.tar gz
Linux x64 135.6 MB ® jok-Bu25-lnux-x64.rpm
Linux x64 153.42MB & jok-8u25-inux-x64 tar.gz
Mac 0S X x64 209.13MB & jdk-8u25-macosx-x64.dmg
Solaris SPARC 64-bit (SVR4 package) 137.01 MB & jdk-8u25-solaris-sparcvd.tar.Z
Solaris SPARC ©4-bit 97.14 MB @ jok-8u25-solaris-sparcvd.tar.gz
Solaris x64 (SVR4 package) 13711 MB ¥ jdk-8u25-solaris-x64.tar.Z
Solaris x64 9424 MB ¥ jdk-8u25-solaris-x64.tar.gz
Windows x86 157.26 MB & jdk-Bu25-windows-i586.exe
Windows x64 169.62ME # jok-Bu25-windows-x64.exe
Java SE Development Kit 8u25 Demos and Samples Downloads LE
Java SE Development Kit 8u25 Demos and ples D: loads are rel d under the
Oracle BSD License.
Product / File Description ‘ File Size l Download
Linux x86 58.63MB #® jdk-Bu25-linux-i586-demos.rpm =’ Javal
Linux x86 58.52MB # jdk-Bu25-linux-i586-demos.tar.gz

Figure 1-2. Accept the license agreement and click the appropriate link for Windows

Executing the JDK Wizard on Windows

Before you install the JDK, create a directory in the root of your C: drive called Java. The
name of this directory is arbitrary, though we call it Java because many of the tools we are
going to install here are related to Java, including the JDK, Android Studio, and the Android
SDK. Consistently installing the tools related to Android Studio in the C:\Java directory also
keeps your development environment organized.

Navigate to the location where your browser downloaded the installation file and execute
that file by double-clicking it. Once the installation begins, you will be presented with the
Installation Wizard, shown in Figure 1-3. In Windows, the JDK installer defaults to
C:\Program Files\Java\. To change the installation directory location, click the Change
button. We recommend installing your JDK in the C:\Java directory because it contains no
spaces in the path name and it’s easy to remember. See Figure 1-4.

4 CHAPTER 1: Introducing Android Studio

ORACLE

Welcome to the Installation Wizard for Java SE Development Kit 8 Update 25

This wizard will guide you through the installation process for the Java SE Development
Kit 8 Update 25.

The Java Mission Control profiling and diagnostics tools suite is now available as part of
the JDK.

J [conce

Figure 1-3. Installation Wizard for the JOK on Windows

ORACLE

Select optional features to install from the list below. You can change your choice of features after
installation by using the Add/Remove Programs utility in the Control Panel

Feature Description

Java SE Development Kit 8
Update 25 (64-bit), induding the
JavaFX SDK, a private JRE, and
the Java Mission Control tools
suite. This will require 130MB on
your hard drive.

Install to:
C:Vavaljdk1.8.0_25}

Figure 1-4. Select the JDK installation directory

CHAPTER 1: Introducing Android Studio

Make a note of where you are installing your JDK. Follow the prompts until the installation is
complete. If prompted to install the Java Runtime Edition (JRE), choose the same directory

where you installed the JDK.

Configuring Environmental Variables on Windows

This section shows you how to configure Windows so that the JDK is found by Android
Studio. On a computer running Windows, hold down the Windows key and press the Pause
key to open the System window. Click the Advanced System Settings option, shown in

Figure 1-5.

Control Panel Home

® Device Manager

¥ Remote settings

By System protection

By Advanced system settings

See alsc
Action Center
| Windows Update

Performance Information and
Tools

View basic information about your computer

Windows edition

Windows 7 Professional

Copyright © 2009 Microsoft Corporation.
All rights reserved.

Service Pack 1
Get more features with a new edition of

Windows 7

System
Rating: =3 Windows Experience Index
Processon Intel(R) Core(TM) i7-3520M CPU @

2.90GHz 290 GHz
Installed memery (RAM): 16.0 GB

System type: 64-bit Operating System
Pen and Touch: No Pen or Touch Input is available for this
Display

Computer name, domain, and workgroup settings
Computer name: ag-PC B9 Change settings
Full computer name: ag-PC

Computer description:

Figure 1-5. Windows System window

6 CHAPTER 1: Introducing Android Studio

Click the Environmental Variables button, shown in Figure 1-6. In the System Variables list
along the bottom, shown in Figure 1-7, navigate to the JAVA_HOME item. If the JAVA_HOME item
does not exist, click New to create it. Otherwise, click Edit.

| Computer Name | Hardware | Advanced | System Protection | Remote |

You must be logged on as an Administrator to make most of these changes.
Performance
Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your logon

Startup and Recovery
System startup, system failure, and debugging information

Figure 1-6. System properties

GHAPTER 1: Introducing Android Studio 7

Value

C:\Program Files\Intel\WiFi\bin\;C:\Prog...
%USERPROFILE % \AppData\Local\Temp
%4USERPROFILE %\AppData\Local {Temp

| [Edt.. || Delete

System variables

Variable Value *
ILMDIR C:\Program Files (x86)\Common Files\A... l:|
JAVA_HOME C:\java\jdk1.8.0_20

KINECTSDK10_DIR C:\Program Files\Microsoft SDKs\Kinect\...
KMP_DUPLICAT... TRUE

[Mew..][Edtue][Delete

Figure 1-7. Environmental variables

Clicking either New or Edit displays a dialog box similar to Figure 1-8. Be sure to type
JAVA_HOME in the Variable Name field. In the Variable Value field, type the location where you
installed the JDK earlier (less any trailing slashes), as shown in Figure 1-4. Now click OK.

Variable name: JAVA_HOME

Variable value: C:\java\jdk1.8.0_25

[ok

Figure 1-8. Edit the JAVA_HOME environmental variable

8 CHAPTER 1: Introducing Android Studio

Just as you did with the JAVA_HOME environmental variable, you will need to edit the PATH
environmental variable. See Figure 1-9. Place your cursor at the end of the Variable Value
field and type the following:

;%JAVA_HOME%\bin

Cx)

Variable name: PATH

Variable value: t-1.9. 2\bin; C: \git\bin; % JAVA_HOME %\bin

Figure 1-9. Edit the PATH environmental variable

Now click OK, OK, OK to accept these changes and back out of the system properties.

To test that the new JDK has been installed properly, pull up a command line by clicking the
Start button, typing emd, and then pressing Enter.

In the command-line window, issue the following command and press Enter:

java -version

If you get a response like the one shown in Figure 1-10, congratulations. You just installed
the JDK properly.

[Microsoft Windows [version 6.1.7601]
iCopyright (c) 2009 Microsoft Corporation. All rights reserved.

C: ‘UseFS\ag>java vers1on
java version "1.8.0_
Java(T™M) SE Runtime Environment (build 1.8.0_25-

b18)
Java HotSpot(TM) 64-Bit Server W (build 25.25-b02, mixed mode)

C:\Users\ag>

Figure 1-10. Confirm the proper JDK installation

Installing the Java Development Kit on Mac

The first two steps in installing the JDK for Mac and Windows are identical. Point your
browser to the following site:

www.oracle.com/technetwork/java/javase/downloads/index.html

When you land on this page, click the Java Download button, shown in Figure 1-11.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

CHAPTER 1: Introducing Android Studio

Sign In/Register Help Country ~ Communities ~ |am a.

ORACLE

Products Solutions Downloads

Store

Java > Java SE > Downloads

Overview Downloads Documentation Community

- m »
m m m

]
0

Java SE Downloads

Java SE Support
Java SE Advanced & Suite 3

éflava'

Java Embedded

Java DB
Web Tier
e DOWNLOAD #
Java Card —_—
Java TV Java Platform (JDK) 8u25
New to Java | Java Platform, Standard E
Communit
el Java SE 8u25
Java Magazine This release includes important security fices. Oracle strongly
users upgrade to this release.

Learn more »

Installation Instructions

» Release Notes

* Oracle License

» Java SE Products

« Third Party Licenses

Certified System Configurations
[

Figure 1-11. The Java Download button on the Java Downloads page

Downloading the JDK on Mac

Accept the license agreement, shown in Figure 1-12, by clicking the Accept License
Agreement radio button. Then you must choose the appropriate JDK for your operating
system. If you’re running a 64-bit version of OS X, you should click the file link to the

right of the Mac OS X64 label, also shown in Figure 1-12. Oracle makes frequent release
updates to the JDK. By the time this book goes to press, a newer version of the JDK will
almost certainly be available, so please be sure to download the latest version. Wait for the
installation file to download.

10 CHAPTER 1: Introducing Android Studio

[

Looking for JOK 8 on ARM?
JOK & for ARM downloads have moved to the JOK & for ARM download page.

[|

Java SE Development Kit 8u25
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.

. Accept License Agreement * Decline License Agreement

Product / File Description l File Size | Download
Linux x86 13524 MB # jdk-8u25-linux-i586.rpm
Linux x86 15488 MB # jdk-8u25-linux-i586.tar.gz
Linux x64 1356 MB & jdk-8u25-linux-x64.rpm
Linux x64 15342 MB & jok-8u25-linux-x64.tar.gz
Mac OS X x64 209.13MB ¥ jdk-8u25-macosx-x64.dmg
Solaris SPARC 64-bit (SVR4 package) 13701 MB # jdk-8u25-solaris-sparcvd.tar.Z
Solaris SPARC 64-bit 97.14 MB # jdk-8u2S-solaris-sparcv9.tar.gz
Solaris x64 (SVR4 package) 13711 MB # jdk-8u25-solaris-x64.tar.Z
Solaris x64 9424MB # jdk-8u25-solaris-x64.tar.qz
Windows x86 15726 MB @ jdk-8u25-windows-i586.exe
Windows x64 169.62MB # jdk-8u25-windows-x64.exe

Java SE Development Kit 8u25 Demos and Samples Downloads

Java SE Development Kit 8u25 Demos and Samples Downloads are released under the
Oracle BSD License.

Product / File Description | File Size | Download
Linux x86 58.63MB ¥ jdk-3u25-linux-i586-demos.rpm E
Linux x86 58.52MB # jdk-8u25-linux-i586-demos.tar.gz

Figure 1-12. Accept the license agreement and click the appropriate link for Mac

Executing the JDK Wizard on Mac

Double-click the .dmg file to execute it. Now click the .pkg file to begin the wizard and click
Continue as required, as shown in Figures 1-13 through 1-15.

CHAPTER 1: Introducing Android Studio 1

| JOK 8 Update 25

4 items e—n;‘}—-
dava DevelopmentKit
Double-click on | all
ground .DS_Store

.Trashes JDK 8 Update 25.pkg

. JOK 8 Update 25

Figure 1-13. JDK 8 Update 25.pkg

000 w Install JDK 8 Update 25 a8

Installing JDK 8 Update 25

& Introduction
© Destination Select
© Installation Type

® Installation
® Summary Writing files...

<) Install time remaining: About a minute

Javar

ORACLE Go Back Continue

Figure 1-14. Installation Wizard

12 CHAPTER 1: Introducing Android Studio

(@0 o « Install JDK 8 Update 25 a

The installation was completed successfully.

@ Introduction -

© Destination Select VA

© Installation Type L i v, i ._||

© Installation
® Summary Install Succeeded
Next Steps?

Access tutorials, APl documentation, developer guides,
release notes and more to help you get started with the JDK.

L—-—')
D ——
. S—

Java

ORACLE' | Close

Figure 1-15. Installation success

Configuring the JDK Version on Mac

To configure your Mac so that the proper JDK is found by Android Studio, open a Finder
window and choose Applications » Utilities. From there, open Java Preferences and, as
instructed, drag the new version to the top of the list so it is recognized as the preferred
version.

Installing Android Studio

Before you begin downloading Android Studio, create a labs parent directory for the labs
you will create in this book. We use C:\androidBook\ as our labs’ parent directory throughout
the book, but you may choose or create whatever directory you see fit. For that reason, we
simply call it the labs parent directory.

Downloading Android Studio is straightforward. Point your browser to this site:
developer.android.com/sdk/installing/studio.html

Now click the large green Download Android Studio for your OS button, shown in Figure 1-16.
Next, select the check box labeled | Have Read and Agree with the Above Terms and
Conditions. Click Download Android Studio for your OS again, and your installation file
should begin downloading. Once the download is complete, execute the file you just
downloaded.

http://developer.android.com/sdk/installing/studio.html

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 1: Introducing Android Studio 13

API Guides Reference Google Services Samples

d

The official Android IDE

j the SDK

iDK Packages

Studio
) Android Studio IDE 3
1 Android SDK tools e
Ip Android 5.0 (Lollipop) Platform
Android 5.0 emulator system image

stem with Google APIs
Library
5

* System Requirements
vith ADT ~ * Other Download Options

Figure 1-16. Download Android Studio

After the Installation Wizard begins, move through its screens by clicking the Next buttons
until you reach the Choose Components screen. There, select all the component check
boxes, shown in Figure 1-17. Then click Next. Agree to the terms and conditions once again.
When you reach the Configuration Settings: Install Locations screen, shown in Figure 1-18,
select the locations for Android Studio and the Android SDK. To be consistent, we chose to
install Android Studio in C:\Java\astudio\ and the Android SDK in C:\Java\asdk\.

Choose which features of Android Studio you want to install,

Check the components you want to install and uncheck the components you don't want to
install, Click Next to continue.

Select components toinstal: [FRR T] De=cpon

[¥] Android SDK
Android Virtual Device |
[¥] Performance (Intel® HAX]

Space required: 3.8GB

Figure 1-17. Choose components

14 CHAPTER 1: Introducing Android Studio

" Android Studio Setup

Configuration Settings
Install Locations

Android Studio Installation Location

The location spedfied must have at least S00MB of free space.
Click Browse to customize:

C:\java\astudio Browse..

Android SDK Installation Location

The location spedfied must have at least 3.2GB of free space.
Click Browse to customize:

C:\java\asdk

Figure 1-18. Select locations for Android Studio and the SDK

Click through several Next buttons as you install both Android Studio and the Android SDK.
You should eventually arrive at the Completing the Android Studio Setup screen, shown in
Figure 1-19. The Start Android Studio check box enables Android Studio to launch after you
click Finish. Make sure the check box is selected, and then go ahead and click Finish, and
Android Studio will launch. Please note that from here on out, you will need to navigate to
either the desktop icon or the Start menu to launch Android Studio.

| Android Studio Setup e

;

Completing the Android Studio
Setup

Android Studio has been installed on your computer,

Click Finish to dose Setup.

Android
Studio

Figure 1-19. Completing the Android Studio setup

GHAPTER 1: Introducing Android Studio 15

When Android Studio starts for the very first time, the Setup Wizard, shown in Figure 1-20,
will analyze your system looking for an existing JDK (such as the one you installed earlier),
as well as the location of the Android SDK. The Setup Wizard should download everything
you need to begin developing apps in Android Studio. Click the Finish button to dismiss the
Setup Wizard.

A Setup Wizard - Downloading Components

Android Studio

Android SDK was installed to C:\java\a=sdk

Android SDK is up to date.

Creating Android wvirtual device

Android virtual device Nexus_5_API 21 x86 was successfully created

Figure 1-20. Setup Wizard — Downloading Components

Creating Your First Project: HelloWorld

Once the Setup Wizard is complete, the Welcome to Android Studio dialog box appears,
shown in Figure 1-21. Click the Start a New Android Project option.

16 CHAPTER 1: Introducing Android Studio

‘!, Welcome to Android Studio

Recent Projects Quick Start

Start a new Android Studio project

Open an exdsting Android Studio project

& 7l ¥

Impert an Android code sample

=
P~
v

Check out project from Version Control

Import Non-Android Studic project

Ao ¥ &

Configure

v.—?b

Docs and How-Tos

Android Studio 101 Buid 1351641136 Check for updates now.

Figure 1-21. Welcome to Android Studio

In the New Project wizard that appears (see Figure 1-22), type HelloWorld in the Application
Name field and type gerber.apress.com in the Company Domain field. Notice that the
package name is the reverse company domain plus the name of the project. Install your
HelloWorld project in the root of your labs parent directory. As mentioned earlier, we use
C:\androidBook\ if you’re running Windows. If you’re running Mac or Linux, your labs parent
directory name will not begin with a letter, but rather a forward slash.

CHAPTER 1: Introducing Android Studio 17

~
New Project
A Android Studio
|

Configure your new project

Application name: | HelloWorld

Company Domain: | gerber.apress.com

Package name: com.apress.gerber.helloworld

Project location: c\androidBook\HelloWorld

m [Cancel]l Finish |

Figure 1-22. Configure your new project

The Android operating system can run on many platforms, including game consoles,
televisions, watches, glasses, smartphones, and tablet computers. By default, the Phone
and Tablet check box will be selected, and API-8 will be selected as the minimum SDK.
Accept these settings and click Next, as shown in Figure 1-23.

18 CHAPTER 1: Introducing Android Studio

(] Phone and Tablet

Minimum SDK | API8: Android 2.2 (Froyo) B

Lower API levels target more devices, but have fewer features available. By
targeting API8 and later, your app will run on approximately 100.0% of the
devices that are active on the Google Play Store. Help me choose.

v

Minimum SOK | |

] wear

Minimum SDK | J

!:1 Glass (Not Installed)

Minimum SDK ’]

Figure 1-23. Select the form factors your app will run on

The subsequent screen in the New Project Wizard prompts you to choose a layout. Choose
Blank Activity and click the Next button. Accept the default names, as shown in Figure 1-24.
They should be the following:

Activity Name: MainActivity
Layout Name: activity_main
Title: MainActivity

Menu Resource Name: menu_main

CHAPTER 1: Introducing Android Studio 19

Creates a new blank activity with an action bar.

Activity Name: [MainActivit] |
Layout Name: activity_main I
Title: MainActivity |

Menu Resource Name: | menu_main

Blank Activity

The name of the activity class to create

| Previous Next | Cancel

Figure 1-24. Choose options for your new file

Using Android Virtual Device Manager

The Android Virtual Device Manager allows you to create Android Virtual Devices (AVDs),
which you can then run to emulate a device on your computer. There’s an important but subtle
distinction between simulation and emulation. Simulation means that the virtual device is
merely a fagcade that simulates how an actual physical device might behave, but does not run
the targeted operating system. The iOS development environment uses simulation, and this is
probably a good choice for iOS given the limited number of devices available for that platform.

With emulation, however, your computer sets aside a block of memory to reproduce the
environment found on the device that the emulator is emulating. Android Studio uses
emulation, which means the Android Virtual Device Manager launches a sandboxed version
of the Linux kernel and the entire Android stack in order to emulate the environment

found on the physical Android device. Although emulation provides a much more faithful
environment on which to test your apps than simulation does, booting up an AVD can

20 CHAPTER 1: Introducing Android Studio

drag into the minutes, depending on the speed of your computer. The good news is that
after your emulator is active in memory, it remains responsive. Nevertheless, if you have

an Android phone or tablet, we recommend using the physical device to test your apps,
rather than using an AVD. That said, let’s first set up an AVD using the Android Virtual Device
Manager, and later in the chapter we’ll show you how to connect your physical device, if you
have one.

Click the Android Virtual Device Manager icon encircled in Figure 1-25. On the first screen

of the Andriod Virtual Device Manager Wizard, click the Create Virtual Device button. On

the next screen, shown in Figure 1-26, choose Galaxy Nexus and click Next. The next
screen, shown in Figure 1-27, allows you to select a system image. Select the first option for
Lollipop (or the latest API) with an ABI of x86_64. Click Next. On the next screen, click the
Finish button to verify your AVD settings. Congratulations, you just created a new AVD.

Figure 1-25. AVD icon

(2 Vitun Deice

Select Hardware

Choose a device definition

) [Galaxy Nexus

Name ~ | Size Resolution Density.

SamSung s4 50 1080:1920 whdpi

Tablet Neas S a0 420800 hdpi L
Size: normal
Wear Nexws One ar 480,800 hdpi g‘:ﬂiw':?fm
™ Mews 6 596" 144002560 S560dpi
1280px
News 5 4585° 10801920 sohdpi

Mesus & 47 TEE:1280 *hdpi

54" PAVGA 54" 450,854 mdpi
517 WVGA 517 480800 mdpi
| New Hardware Prefile | . Import Hardware Profiles %] | | Clene Device... |

Figure 1-26. Select the Galaxy Nexus hardware

GHAPTER 1: Introducing Android Studio

System Image

Select a system image

ABL

armezbi-via

Target
Android 501

Lallipop Download
Lollipop Download
Lollipop Download
KitKat Download
KitKat Download
Jelly Bean Download
Jelly Bean Download
Jelly Bean Download
Jelly Bean Download

Jelly Bean Download

[/ Show downloadable system images

Google APls (Google Inc.) - go

Android SDK Platform 5.0
System Image armeabi-via wi

System lrr

Android SDK Pl

Android SDK P

Android SDK Pl

Lollipop

AP Level

21

Android

5.0.1

Android Open Source
Project

System Image

xB6_64

7 - See documentation for Android 5 APls

=

21

Figure 1-27. Select the x86_64 system image

Note The x86_64 version requires Intel hardware acceleration, which works on a limited number
of Intel chip sets. If you attempt to install x86_64 and it fails, try the armeabi-vxx version instead.

Tip If you want to create an AVD for a device for which Android Studio does not already have a
device definition, we recommend going to phonearena.com and searching for your model. There
you will find technical specs, which you can use to create a new device definition. Once you create
a new device definition, use the same steps to create a new AVD.

There is an excellent third-party Android emulator on the market called Genymotion. The
Genymotion emulator is free for noncommercial purposes and performs very well. Explaining how to
set up and use Genymotion is beyond the scope of this book, but you can download the Genymotion

emulator from genymotion. com.

http://phonearena.com
http://genymotion.com

22 CHAPTER 1: Introducing Android Studio

Running HelloWorld on an AVD

To run your HelloWorld app on the newly created AVD, click the green Run button on the
toolbar, as shown in Figure 1-28.

sfactor Build Run
& >

[“Zres) [1layout » © fragment_main.xml

Tools VCS indow Help

Figure 1-28. Run button

Be sure that the Launch Emulator radio button is selected and then choose the Galaxy
Nexus API 21 in the combo box. Click OK, as shown in Figure 1-29. Be patient, because
launching an AVD can take a few minutes. You should now see your HelloWorld app running
in a window on your computer, as shown in Figure 1-30.

-
(O Choose a running device
@ Launch emulator
Android virtual device: | Galaxy Nexus API 21 u[=
[Use same device for future launches
o =

Figure 1-29. Choosing a device and launching the emulator

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 1: Introducing Android Studio 23

HelloWorld

Hello world!

Figure 1-30. Emulator screenshot

Running HelloWorld on an Android Device

As already mentioned, although AVDs are useful for emulating specific devices, particularly
those that you do not have on hand, developing apps on a physical Android device is far
more desirable. If your computer does not recognize your Android device when you connect
it to your computer via a USB cable, you probably require a USB driver. If your computer
initially recognizes your Android device, you should probably forgo installing a different or
newer version of the USB driver, as this could cause the USB connection to fail.

Note Mac and Linux users do not usually need to download USB drivers to establish a USB
connection between their Android devices and their computers.

24 CHAPTER 1: Introducing Android Studio

You can use the table at developer.android.com/tools/extras/oem-usb.html#Drivers to
find the appropriate USB driver, or use your favorite search engine to find the USB driver
for your model. Download the driver and install it on your computer. On your Android
device, tap Settings and then Developer Options. Make sure the USB Debugging check
box is selected. Some devices, such as Samsung devices, require a secret code to enable
USB debugging, so you may want to use your favorite search engine to research how to
enable USB debugging on your device. YouTube is also a good source of how-to videos on
enabling USB debugging on your specific device if this process is not patently obvious.

Most Android devices ship with a cable that has a USB male plug on one end and a
micro-USB male plug on the other. Connect your Android device to your computer by
using this cable. Click the Android Device Monitor button encircled in Figure 1-31. If the
driver was installed properly, you should see the device listed there and connected, as
shown in Figure 1-32.

Window _Help
b ow O ¥

)
3!"

Figure 1-31. Android Device Monitor button

File Edit Run Window Help
Quick Access | | [@ooms) S vE - E B QT
@ Devices 22 = B |3 Threads | (@ Heap | @ Allocat... | % Networ... | FileEx.. &3 | @ Emulat...| [Syste = =
| R0 220 & @ RE|[=-[+ 7
v Name Size Date Time Permissions Info s
Name = acct 2014-11-13 20:14 drwaer-xr-x
[htc-htc_one x-HT23MW3066 Online || & cache 2014 (7o J000Z - drvoaune = g
(= cenfig 2014-11-13 20:14 dr-x------
= d 2014-11-13 20:14 Irwxrwxrwx -> fsys/ker... L
> (= data 2014-11-04 11:55 drwxrwae--x
\=| default.prc 118 1969-12-31 18:00 -rw-r--r--
= dev 2014-11-18 1817 drwxr-xr-x
> (= devieg 2014-11-19 10:00 drwx------
& etc 2014-11-13 20:14 Irwxrwxrwx -> [system...
» = firmware_c 2014-11-13 20:14 dirwxrwa-=x
» (& firnware_c 1969-12-31 18:00 drwxrwarwa
» (= firnware_r 1968-12-31 18:00 drwxrwarwx
ok T ' » (= firnware_v 1969-12-31 18:00 drwstrwarwx -
D LogCat 2 = A
SavedFilters o == ceyrch for messages. Accepts Java regexes. Prefix with pid, app:, tag: or text: to limit scope. H E]
88M of 573M i}

Figure 1-32. Android Device Monitor screen showing the connected physical device

http://developer.android.com/tools/extras/oem-usb.html%23Drivers

CHAPTER 1: Introducing Android Studio 25

Note Keep in mind that the connection between your computer and your Android device is
established by using a server called the Android Debug Bridge (ADB). If you don’t see the device,
click the Terminal button at the lower-left corner of the IDE and issue the following command:

adb start-server

If after restarting the ADB server you still don’t see the device, it’s possible, though unlikely, that the
USB driver requires a system reboot to take effect.

Now click the green Run button (shown previously in Figure 1-28). Select the connected
Android device. In Figure 1-33, the connected device is an HTC One X Android smartphone.
Click OK, wait a few seconds, and you will see HelloWorld running on your Android device.

(®) Choose a running device

Device | Serial Number | State 'Com
[B¥ Emulator Galaxy Nexus API 21 Android 5.0 (emulator-5554 Online

[BlH7C HTC One X Android 411 (AP116) |HT23MW306644 m-

O Launch emulator
Android virtual device: | Galaxy Nexus API 21

[] Use same device for future launches

Figure 1-33. The Choose Device screen with the physical Android device listed

26 CHAPTER 1: Introducing Android Studio

Summary

In this chapter, you installed the Java Development Kit, or JDK, and you also installed
Android Studio and the Android SDK. You used the New Project Wizard to create a simple
app called HelloWorld. Then you created an Android Virtual Device, or AVD. We showed you
how to install any required USB drivers. Finally, we showed you how to launch HelloWorld on
both an AVD and a physical Android device. You should now have all the software required
to begin developing Android apps in Android Studio.

Chapter

Navigating Android Studio

Android Studio is a windowed environment. To make the best use of limited screen real-estate,
and to keep you from being overwhelmed, Android Studio displays only a small fraction of
the available windows at any given time. Some of these windows are context-sensitive and
appear only when the context is appropriate, while others remain hidden until you decide to
show them, or conversely remain visible until you decide to hide them. To take full advantage
of Android Studio, you need to understand the functions of these windows, as well as how
and when to display them. In this chapter, we’re going to show you how to manage the
windows within Android Studio.

One of the essential functions of any integrated development environment (IDE) is navigation.
Android projects are typically composed of many packages, directories, and files, and an
Android project of even modest complexity can contain hundreds of such assets. Your
productivity with Android Studio will depend in large measure on how comfortable you are
navigating within these assets and across them. In this chapter, we’re also going to show
you how to navigate in Android Studio.

Finally, we’ll show you how to use the help system within Android Studio. To take full
advantage of this chapter, open the HelloWorld project we created in Chapter 1. If this
project is already open in Android Studio, you’re ready to go. Please refer to Figure 2-1 as
we discuss the following navigation features.

27

http://dx.doi.org/10.1007/9781430266013_1

28 CHAPTER 2: Navigating Android Studio

Editor Window

i Navigation Bar
Main Menu Bar Editor Tabs avigation Bal Toolbar

i ja A comm apress\gesber\helowerkdlainActivity java - Ardiread Phuda 101 i
|
I
1 a5
. 3 5
: #
Gutter || : N
7| E o ™ Marker Bar
1 5
2% g
: 3
Project Tool Window 17 g
) ~ H
E b
s 11
g 26 public beolewn eapeicaslzess e o
£
= " iBE 14 = ites gerltesld():
Tool Buttons < ——27000 & gandnid [Terminal & Message: EBatles ¥ Gl Conise M Memony Montor
[Gradie build Sniched in 7 sec (4 minutes ago) 2514 CRIF: UTFE: & & O
Status Bar

Figure 2-1. Android Studio’s integrated development environment

The Editor

The primary purpose of any IDE is to edit files. As one would expect, the window that allows
users to edit files in Android Studio is located in the center pane of the IDE. The Editor window
is unigue among windows in that it is always visible and always located in the center pane.
In fact, the Editor window is such a pervasive feature of Android Studio that from here on
out, we refer to it simply as the Editor. All the other windows in Android Studio are called
tool windows and cluster in side panes (left, bottom, and right) around the Editor.

The Editor is a tabbed window, and in this respect it resembles a contemporary web browser.
When you open a file from one of the tool windows, from a keyboard shortcut, or from a
context menu, the file displays as a tab of the Editor. As you already discovered when you built
your first project, HelloWorld, the MainActivity.java and the activity main.xml files were
automatically loaded in the Editor as tabs. Android Studio tries to anticipate which files you’re
likely to start editing, and then opens them automatically as tabs in the Editor upon completion
of the New Project Wizard. Virtually any file may be opened in the Editor, though raw image
and sound files cannot (yet) be edited from within Android Studio. You may also drag and drop
a file from a tool window onto the Editor; doing this opens the file as a tab in the Editor.

Along the top of the Editor are the Editor tabs. Along the left margin of the Editor is the gutter,
and along the right margin of the Editor is the marker bar. Let’s examine each in turn.

CHAPTER 2: Navigating Android Studio

Editor Tabs

To navigate among Editor tabs in Android Studio, use the Alt+Right-Arrow | Ctrl+Right-Arrow

29

or Alt+Left-Arrow | Ctrl+Left-Arrow keys. Of course, you may always select an Editor tab with
your mouse. The Editor tabs’ options are located in the main menu bar at Window » Editor

Tabs. Any action you select from this menu applies to the currently selected tab. Roll your
mouse over the MainActivity.java tab and right-click (Ctrl-click on Mac) it. In the resulting
context menu, shown in Figure 2-2, you will notice many of the same options that you
discovered in Window » Editor Tabs. From this context menu, select the Tabs Placement
submenu. The menu options Top, Bottom, Left, and Right allow you to move the tabs bar.
Moving the tabs bar to the right or left accommodates more visible tabs, though at the

expense of screen real-estate.

Refactor Build Run

Tools VCS Window Help

»

onBarActivity {

edInstanceState) {
ate);
ty main);

) |

) .beginTransaction()

r, new PlaceholderFra

(Menu menu) {

Ctrl+Shift+F10 Du.Rain, menu);

& 1 wappv P ¥ b ¥ ¢
1 [java » [l com » [F] example » [Fapp » (C MainActivity
P 1= | € MahActiviD? = e S CuliFe
s 13; : Close Others
14 ® publ (Close Al
15 ;
16 Copy Path Ctrl+shift+C
176 © Copy Reference Ctrl+Alt+5Shift+C
18 i BIE spiit Vertically
19 £ split Horizontally
20 Pin Tab
2l Tabs Placement
2; Sort Tabs by Filename
: 24
i
25 _
26 &
n.xml 5q |_|
ain. xml 2; Add to Favorites
2; Add Al To Favorites
aolet |:| Rename File...
31 Compile Module "app' Ctrl+5hift+F9
| 32 iy Create ‘MainActivity'...
] 33 P Run MainActivity'
2: , §ik Debug MainActivity’
=]
36 Local History
37 ® Create Gist...
3giel O public boolean conlptionsltemSelected (Menultem item) {
39 [:1 Handle action bar item cli - =
40 ;
41l @
42

Figure 2-2. Editor tab context menu

30 CHAPTER 2: Navigating Android Studio

The Close and Close All actions of the Editor tab context menu are straightforward. The
Close Others action is used when you want to close all the tabs except the active tab.

The Split Vertically and Split Horizontally actions are used to subdivide your Editor into panes.
Split Vertically is particularly useful if you want to compare two files side by side. You may
split panes ad infinitum, though the utility of such nested splits quickly diminishes.

You may also drag and drop files from other windows to any pane of the Editor, or from one
pane to another. Closing the last tab of a pane causes the entire pane to disappear.

The Gutter

The gutter is used to convey information about your code. Perhaps the most obvious feature
of the gutter is that small color swatches and image icons are displayed there alongside
corresponding lines of code that refer to those visual resources. The gutter is also used to
set breakpoints, facilitate code-folding, and display scope indicators. All of these features
are covered in more detail in subsequent sections and chapters.

The Marker Bar

Along the right side of the Editor is the marker bar. The marker bar is used to indicate the
location of important lines in your source files. For example, the marker bar highlights
warnings and compile-time errors in your Java or XML files. The marker bar also shows you
uncommitted changes, search results, and the locations of bookmarks.

The marker bar does not scroll like the gutter does; rather, the colored ticks on the marker
bar are positioned relative to the length of the file. Clicking a colored tick in the marker bar
immediately jumps you to that location in the file. Practice using the marker bar by clicking
some of its colored ticks now.

Tool Buttons

You’ve already seen the Project tool window, displayed in the left pane by default. To see a
list of all the tool windows, choose View » Tool Windows from the main menu bar. Now look
carefully along the left, right, and bottom margins of the IDE. There you will find tool buttons
that correspond to many of the tool windows. Notice that some of these tool buttons are also
labeled with a number, which is used in combination with the Alt (Cmd on Mac) key to toggle
that tool button’s corresponding tool window open/closed. Experiment with clicking the tool
buttons now to practice this skill. Also practice using the keyboard shortcuts Alt+1 | Cmd+1,
Alt+2 | Cmd+2, Alt+3 | Cmd+3, and so forth to toggle the tool windows open/closed.

When a tool window is open, the corresponding tool button is dark gray, indicating that

it is depressed. Notice that the tool buttons are located in the corners of the margins.

For example, the default position of the Project tool button is in the upper corner of the left
margin, while the Favorites tool button is located by default in the lower corner of the

left margin.

CHAPTER 2: Navigating Android Studio 31

Side panes (left, bottom, and right) may be shared by up to two tool windows at a time.

To see how side panes may be shared, open both the Favorites and the Project tool
windows. Notice that the Favorites and Project tool buttons are located in opposing corners
of the same margin. Attempting to share a side pane between two tool windows whose
corresponding tool buttons are located in the same corner will not work. For example, the
Project and Structure tool windows cannot be displayed simultaneously —at least not in
Android Studio’s default configuration.

Default Layout

Don’t confuse default layout in Android Studio with layouts in the Android SDK. A default
layout is a specific set of tool windows clustered around the Editor. Android Studio is
configured out-of-the-box with a default layout that shows the Project tool window in the left
pane. This is the layout displayed previously in Figure 2-1.

Let’s examine the Window menu in the main menu bar. The first two menu items are Store
Current Layout as Default, and Restore Default Layout. The Restore Default Layout action

is typically used when the IDE becomes overcrowded, or you just want to clear the slate

and return to a familiar layout. You may also customize your default layout by opening and
closing whichever tool windows you like, resizing and/or repositioning them, and then setting
that new layout as the default by selecting Store Current Layout as Default.

REPOSITIONING TOOL BUTTONS

As mentioned, the Project and Structure tool-windows can’t be displayed simultaneously because their
corresponding tool-buttons are located in the same corner. However, you can move any tool-button to any
corner you want. Drag-and-drop the Structure tool button to the bottom corner of the left margin. Now, toggle
the Project and Structure tool-windows open by using either the keyboard shortcuts Alt+1 | Cmd+1 and
Alt+7 | Cmd+7 or by clicking their tool buttons. Because we moved their tool buttons to opposing corners,
the Project and Structure tool windows may now share the same side pane and be displayed simultaneously.

Navigation Tool Windows

This section discusses tool windows that are used specifically for navigation: Project,
Structure, Favorites, TODO, and Commander. Table 2-1 lists the function of each of these
navigation tool windows. Subsequent chapters cover many of the other tool windows.

32 CHAPTER 2: Navigating Android Studio

Table 2-1. Navigation Tool Windows

Tool Window PCKeys Mac Keys Function

Project Alt+1 Cmd+1 Allows you to navigate the files and assets in your project
Favorites Alt+2 Cmd+2 Displays favorites, bookmarks, and breakpoints
Structure Alt+7 Cmd+7 Presents a hierarchical tree of the objects or elements in

the current file

Commander Similar to the Project tool window, but allows for easy
management of files

TODO Displays a list of all the active TODOs in a project

The Project Tool Window

We find the Project tool window to be the most useful of navigation tool windows because
it combines wide scope with relatively easy access. To appreciate the power and scope

of the Project tool window, you may want to set the window’s mode to Project. There

are three modes; Project, Packages, and Android. By default, Android Studio will set the
mode to Android. Android and Project are the most useful modes, though the Android
mode may hide certain directories from you. The mode setting combo-box is located at

90 degrees and adjacent to the Project tool button in the upper left corner of the IDE.

The Project tool window provides a simple tree interface with files and nested directories
that you can toggle. The Project tool window gives you an overview of all the packages,
directories, and files in your project. If you right-click (Ctrl-click on Mac) a file in the Project
tool window, a context menu appears. There are three important menu items in this
context menu: Copy Path, File Path, and Show in Explorer. Clicking Copy Path copies the
operating system’s absolute path to this file to the clipboard. Clicking File Path displays
the path as a stack of directories, terminating with the file on top, and clicking any of these
directories opens them in the operating system. Clicking Show in Explorer shows the file in
a new window of your operating system. See Figure 2-3.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 2: Navigating Android Studio 33

¥ HelloWorld - [c\androidBook\HelloWorld] - [app] - ..\app\src\mait
File Edit View Navigate Code Analyze Refactor Build Run

DHED % M o € > W[4
L2app Llsrc [Cimain » [java) 5] com -fi};_qgfess D_g_et
g ol - © * | - 1~
g\v Caapp '
= 1 manifests

= [java

" [21 com.apress.gerber.helloworld
[©1 com.apress.gerber.helloworld (androidTest [

" Cares

[:7 drawable

[layout

[£1 menu

[values
" Gradle Scripts

<l I: structure

Figure 2-3. The Project tool window

The Structure Tool Window

The Structure tool window displays a hierarchy of elements in your file. When the Editor
is displaying a Java source file such as MainActivity.java, the Structure tool window
displays a tree of elements such as fields, methods, and inner classes. When the Editor
is displaying an XML file such as activity main.xml, the Structure tool window displays
a tree of XML elements. Clicking any element in the Structure tool window immediately
moves your cursor to that element in the Editor. The Structure tool window is particularly
useful for navigating among elements in large source files. Practice this skill by opening
the Structure tool window and navigating among the elements of both MainActivity.java
and activity main.xml. See Figure 2-4.

34 CHAPTER 2: Navigating Android Studio

File Edit View Navigate Code Analyze Refactor Build Run Tool
ODH O ¢ ¥ 45t [app
- HelloWorld - app src L main *] java ' =] com =] apre
. A | G

[+

Structure
€ & MainActivity

m 7 onCreate(Bundle): void *ActionBarAct

1: Project

m ‘& onCreateOptionsMenu(Menu): boolean * Activity

-] W N

m & onOptionsitemSelected(Menultem): boolean Activit

(=TT I]

<l I: Structure
b=t

=
N

4% Build Variants
[8
135] (=]

L

o

LS T N R S B S R N)
£

=1

orites

Figure 2-4. The Structure tool window

The Favorites Tool Window

When developing a feature (or debugging a bug) in Android, you will likely create or
modify several related files. Moderately complex Android projects may contain hundreds
of individual files, so the ability to group related files is useful indeed. The Favorites tool
window contains favorites that allow you to logically group references to related files that
might otherwise be physically located in completely different parts of your project.

Make sure that both the MainActivity.java and activity main.xml files are loaded as tabs
in the Editor. Now right-click (Ctrl-click on Mac) either tab in the Editor and select Add Al
to Favorites from the context menu. In the Input New Favorites list Name field, type main
and press OK. If the Favorites tool window is not open, activate it now by toggling Alt+2

| Cmd+2. Expand the favorites item called main, and double-click one of the files listed
therein to open/activate it.

CHAPTER 2: Navigating Android Studio 35

Just as the Favorites window allows you to navigate immediately to any particular file or groups
of files, bookmarks allow you to navigate immediately to any particular line in a file. Position
your cursor on any line in MainActivity. java. Now press F11 (F3 on Mac). This action creates
or removes a bookmark in any source file, including XML files. Notice both the checkmark

in the gutter and the black tick in the marker bar indicating the new bookmark. To view the
bookmark you just created, toggle open the bookmarks in the Favorites tool window.

Note OnaPC,if F11 does not seem to be responding, check to make sure that the F-Lock key is
activated on your keyboard.

Breakpoints are used for debugging. Unlike bookmarks, which may be set in any file, you
need to be in a Java source file in order to set a breakpoint. Open MainActivity.java and
click in the gutter next to the following line of code:

setContentView(R.layout.activity main);

You will notice that a red circle now occupies the gutter and that the line is also highlighted
red. Breakpoints can be set only on executable lines of code; trying to set a breakpoint on
a comment line, for example, will not work. To view your newly created breakpoint, toggle
open the Breakpoints tree in the Favorites tool window. There are several more interesting
things you can do with breakpoints, and we discuss breakpoints at length in Chapter 12,
which is devoted to debugging.

The TODO Tool Window

TODO means, of course, to do. TODOs are essentially comments that indicate to the
programmers and their collaborators that there remains work yet to be done. TODOs are
written like comments, beginning with two forward slashes, the word TODO in all-caps, and
a space. For example:

//T0DO inflate the layout here.

Create a TODO in MainActivity.java and open the TODO tool window to view it. Clicking a
TODO in the TODO tool window immediately jumps to that TODO in your source code.

The Commander Tool Window

The Commander tool window is a navigation aid with left and right panes. These panes
function much like the Project and Structure tool windows do. The Commander tool window
differs from these other navigation windows in that it displays only one directory level at a
time, rather than displaying nested directory trees. If you prefer Windows-style navigation or
you find that the Project tool window is too overwhelming, then the Commander tool window
may be a good navigation alternative.

http://dx.doi.org/10.1007/9781430266013_12

36 CHAPTER 2: Navigating Android Studio

The Main Menu Bar

The main menu bar is the uppermost bar in Android Studio, and you can execute virtually
any action by navigating through its menus and submenus. Unlike the other bars in Android
Studio, the main menu bar cannot be hidden. Don’t be overwhelmed by the many actions
contained in the main menu bar and its submenus. Even the most seasoned Android
developer will use only a fraction of these actions on a daily basis, and most of the actions
have corresponding keyboard shortcuts and/or context menu items. We discuss many of the
actions contained in the main menu bar in subsequent sections and chapters.

The Toolbar

The toolbar contains buttons for frequently used text operations such as Cut, Copy, Paste,
Undo and Redo. As you’ve already seen in Chapter 1, the toolbar also contains buttons to
various managers within Android Studio, including the SDK Manager and the Android Virtual
Device Manager. The toolbar also has buttons for Settings and Help, as well as buttons to
Run and Debug your app. All of the buttons in the toolbar have corresponding menu items
and keyboard shortcuts. Advanced users may want to hide the toolbar to conserve screen
real-estate by unchecking the View » Toolbar menu item.

The Navigation Bar

The navigation bar displays a horizontal chain of arrow boxes representing the path from
your project’s root directory (on the left) to the currently selected tab in the Editor (on the
right). The navigation bar may be used to navigate your project’s assets without having to
resort to the Project or Commander tool windows.

The Status Bar

The status bar, shown in Figure 2-5 (and previously in Figure 2-1), displays relevant and
context-sensitive feedback, such as information about any running processes or the state of
your project’s Git repository. Let’s explore the status bar in some detail now.

Line Separator Area File Access Indicator Area
[&3 paste from ciipboard 156 CRLF: UTF8: & & ||
| . -/ [
Toggle Margins Button ~ Message Area Editor Cursor Position Area Text Format Area

Highlighting Level Button

Figure 2-5. Status bar

In the leftmost corner of the status bar is the Toggle Margins button. Clicking this button
toggles hiding and showing the margins. In addition, when you hover your mouse over this
button, a context menu appears that allows you to activate any of the tool windows.

http://dx.doi.org/10.1007/9781430266013_1

CHAPTER 2: Navigating Android Studio 37

The message area is used to provide feedback and display any information about concurrently
running processes. This area also displays hints as you roll your mouse over Ul elements
such as menu items or buttons in the toolbar. Clicking on this area opens the Event log.

The Editor cursor position displays the location of your cursor in the Editor in line:column
format. Clicking on this area activates a dialog box allowing you to navigate directly to a
particular line in your code.

The line separator area displays the format of the carriage returns used in your text files.
On Windows, the default is CRLF, which stands for carriage return line feed. LF is the
standard format used on Unix and Mac machines, as well as in Git. If you’re developing on a
Windows computer, Git will typically convert from CRLF to LF when committing your code to
the repository.

The text format area describes the text encoding used for your source files. The default is
UTF-8, which is a superset of ASCIl and includes most of the Western alphabets, including
any characters that you might find in a standard Java or XML file.

The file access indicator area allows you to toggle between read/write and read-only. An
unlocked icon means that the current file in the Editor has read/write access. A lock icon
means that the current file in the Editor is read-only. You can toggle these settings by
clicking the indicator’s icon.

The Highlighting Level button activates a dialog box with a slider that allows you to set the
level of highlighting you want to see in your code.

The default setting is Inspections, which corresponds to an icon of a frowning Inspections
Manager. This setting indicates that you should be prepared for some tough love, as the
Inspections Manager will be strict in identifying both syntax errors and possible problems
with your code, called warnings. You can see some of the warnings generated by the
Inspections Manager in the marker bar as yellow ticks.

The next setting on the slider is Syntax, which corresponds to an icon of the Inspections
Manager in profile. For this setting, the Inspections Manager is turning a blind eye to
warnings. Syntax mode is less strict than Inspections mode, but still highlights problems
with syntax that will prevent your code from compiling.

The last highlight mode on the slider is None, which corresponds to an icon of a smiling
Inspections Manager. This icon makes me think that the Inspections Manager is happy-drunk
and just doesn’t care about your code. Even the most egregious syntax errors are ignored

in this mode, though the compiler will still choke on them when you attempt to build.

| recommend leaving the highlight level to Inspections and learning to appreciate the
Inspections Manager’s tough love.

Common Operations

This section reviews various common operations used in Android Studio. If you’ve used
a text editor like Microsoft Word, you will likely be familiar with the features covered in
this section.

38 CHAPTER 2: Navigating Android Studio

Selecting Text

As you would expect from any good text editor, double-clicking any word in a source file
selects it. In addition, clicking and dragging the cursor across letters or words selects those
text elements. Placing your cursor anywhere in a source file and pressing Shift+Down-Arrow
or Shift+Up-Arrow selects lines of text beginning at the cursor. Triple-clicking anywhere on a
line of text selects the entire line. Pressing Ctrl+A | Cmd+A selects all text in a file.

If you place your cursor inside any word and press Ctrl+W | Alt+Up-Arrow, the entire word
becomes selected. If you continue to press Ctrl+W | Alt+Up-Arrow, the selection grows to
include adjacent text ad infinitum. If you now press Ctrl+Shift+W | Alt+Down-Arrow, the
selection shrinks. This growing/shrinking selection functionality is called structural selection
in Android Studio.

Using Undo and Redo

The Undo and Redo commands are useful for rolling back and rolling forward a limited
number of edit operations. Changes are delimited by specific Ul events such as pressing
Enter or repositioning the cursor. The keyboard shortcuts for Undo and Redo are Ctrl+Z

| Cmd+Z and Ctrl+Shift+Z | Cmd+Shift+Z, respectively. There are purple right- and left-
arrows on the left side of the toolbar that will do the same. The default on Android Studio is
to remember all your steps back to your last save or up to 300 steps. Undo and Redo are
applied to only one file at a time, so the most effective way to roll back changes is to use Git,
which is discussed in Chapter 7.

Finding Recent Files

Among the best features of Android Studio is that it remembers all the files you worked on
recently. To activate this command, choose View » Recent Files or press Ctrl+E | Cmd+E.
The resulting dialog box allows you to select any recent file and opens it as a tab in the
Editor. The default limit remembers up to 50 previous files. You can change these limits by
navigating to File » Settings » Limits » Editor » Recent Files Limit.

Traversing Recent Navigation Operations

Android Studio also remembers your recent navigation operations. Navigation operations
include cursor moves, tab changes, and file activations. To traverse your navigation
operations history, press Ctrl+Alt+Left-Arrow | Cmd+Alt+Left-Arrow or Ctrl+Alt+Right-Arrow
| Cmd+Alt+Right-Arrow. Keep in mind that navigation operations are different from edit
operations; if you want to traverse your edit operations, you should use Undo and Redo.

Cutting, Copying, and Pasting

If you’'ve used any text editor or word processor, you’re familiar with Cut, Copy, and
Paste. Table 2-2 lists these basic commands, as well as some of the extended clipboard
commands.

http://dx.doi.org/10.1007/9781430266013_7

CHAPTER 2: Navigating Android Studio 39

Table 2-2. Cut, Copy, and Paste

Command PC Keys Mac Keys

Cut Ctrl+X Cmd+X

Copy Ctrl+C Cmd+C

Paste Ctrl+V Cmd+V

Extended Paste Ctrl+Shift+V Cmd+Shift+V
Copy Path Ctrl+Shift+C Cmd+Shift+C
Copy Reference Ctrl+Alt+Shift+C Cmd+Alt+Shift+C

In addition to the simple Cut, Copy, and Paste functionality provided by the OS clipboard,
Android Studio has an extended clipboard that remembers the last five Cut and Copy
operations. When you cut or copy text from Android Studio—or virtually any other
application while Android Studio is running— Android Studio places that text onto a stack.
To see the extended clipboard stack, press Ctrl+Shift+V | Cmd+Shift+V. The resulting dialog
box allows you to choose whichever item you’d like to paste. See Figure 2-6.

E] applications
E] view
[l ¢+ nflate the menu; this add

B onCreatel0ptionsMenu

Figure 2-6. Extended clipboard

40 CHAPTER 2: Navigating Android Studio

You can also change the size of the extended clipboard stack by navigating to File »
Settings » Limits » Editor » Maximum Number of Contents to Keep in Clipboard. You

can also compare any currently selected text with that of the most recent element in the
extended clipboard by right-clicking the selection and selecting the Compare with Clipboard
menu item.

The Copy Path command Ctrl+Shift+C | Cmd+Shift+C copies the fully qualified operating
system path of any file or directory selected in the Project or Commander tool windows, or
any tab of the Editor. Copy Path is particularly useful for operations in a terminal session.

With Copy Reference Ctrl+Alt+Shift+C | Cmd+Alt+Shift+C, Android Studio allows you to
copy a logical reference to a method, variable, or class. When you paste this reference into
another source file, Android Studio automatically includes any required package qualifiers
and imports. You can also use generic Cut, Copy, and Paste on packages, directories, and
files in the Project and Commander tool windows in lieu of mouse operations such as
drag-and-drop in order to reorganize the location of assets in your project.

Context Menus

Numerous context menus can be activated by right-clicking (Ctrl-clicking on Mac) on the
IDE. You’ve already explored the Editor tab context menu in a previous section. Most panes,
icons, and bars in Android Studio will generate a context menu if you right-click (Ctrl-click
on Mac) it. One of the greatest features of Android Studio is that actions may be performed
in more than one way. This redundancy means that you are free to develop your skills and
habits according to your own preferences. | find that using keyboard shortcuts for the most
frequent operations, and menu and context-menu actions for less-frequent operations is
the most effective way to interface with Android Studio. Explore the context menus by right-
clicking (Ctrl-clicking on Mac) bars, tabs, panes, and files in the IDE now.

Getting Help

The Help menu in Android Studio has several useful menu items. Find Action (Ctrl+Shift+A

| Cmd+Shift+A) is the command you will use most often to get help in Android Studio. This
command activates a dialog box that allows you to search for any feature in Android Studio.
Press Ctrl+Shift+A | Cmd-+Shift+A and type Show Line Numbers in the search box. Now
use your arrow keys to select Settings and press Enter. In the Settings window, choose
Editor » Appearance. You should see the Show Line Numbers check box.

Choosing Help » Online Documentation is your source to all the technical specifications for
Android Studio. This is the most comprehensive documentation for Android Studio. Also,
the Help » Default Keymap Reference menu item is a useful reference. You may consider
printing this PDF and keeping it nearby as you learn to use Android Studio.

CHAPTER 2: Navigating Android Studio M

Navigating with the Keybhoard

The keyboard is perhaps the most powerful way to navigate around Android Studio.
Select the Navigate menu from the main menu bar to inspect its contents. This section
discusses the most important menu items (shown in Table 2-3) and their corresponding
keyboard shortcuts from the Navigate menu. Subsequent chapters discuss other menu items.

Table 2-3. Keyboard Navigation

Command PC Keys Mac Keys

Select In Alt+F1 Alt+F1

Class Ctrl+N Cmd+O

File Ctrl+Shift+N Cmd+Shift+O

Line Ctrl+G Cmd+L

Related File Ctrl+Alt+Home Alt+Cmd+Up-Arrow
Last Edit Location Ctrl+Shift+Backspace Cmd+Shift+Backspace
Type Hierarchy Ctrl+H Ctrl+H

Declaration Ctrl+B Cmd+B

Select In

One of the best features of Android Studio is that navigation is bilateral. You've already seen
how to open/activate files as tabs of the Editor from various tool windows. Now you’re going
to learn how to navigate to various tool windows from the Editor.

Press Alt+F1. This activates the Select In context menu, which contains several menu items,
including Project View, Favorites, and File Structure. Click the Project View option. The
Project tool window becomes activated, the file corresponding to the active tab of the Editor
is highlighted, and any parent directories of that file are toggled open. Android projects tend
to have a lot of file assets; therefore, using Select In is among the most important skills that
you will master.

Class

The Class action allows you to navigate to a particular Java class. It’s important to note that
this action searches for only Java source files, or inner classes of Java source files. Press
Ctrl+N | Cmd+0O and start typing act. Android Studio has already indexed all of your files,
and so it will provide you a list of possible matches, with the most likely match highlighted.
All you need to do is press Enter to open MainActivity.java.

42 CHAPTER 2: Navigating Android Studio

File

The File action allows you to navigate to any file in your project. If you’re looking for an

XML file in your project, this is the action that you will want to use. Press Ctrl+Shift+N |
Cmd+Shift+O and start typing act. We’ve used the same search term act on purpose to
illustrate the wider scope of Navigate » File. Notice that the search results include the Java
source file MainActivity.java as well as any other files, such as activity main.xml. Use the
arrow keys to select activity main.xml and press Enter to open it.

Line
The Line action Ctrl+G | Cmd+L activates a dialog box that allows you to navigate to a

particular line:column of your source file. If you type a simple integer in the resulting Go to
Line dialog box and press OK, Android Studio will jump to that line without regard to column.

Related File

The Related File action Ctrl+Alt+Home | Alt+Cmd+Up-Arrow is one of the most useful
commands in Android Studio. Android projects typically have a lot of related files. For
example, a simple Android activity usually has at least one corresponding XML layout file
that renders the activity’s layout, and one corresponding XML menu file that renders the
activity’s menu. As you work with fragments, this complexity only increases. You've already
seen how to group related files together by using Favorites. With Navigate » Related File,
you can query Android Studio to show you related files. With the MainActivity.java tab
activated, press Ctrl+Alt+Home | Alt+Cmd+Up-Arrow. You should see activity main.xml
listed there. Use your arrow keys to select it and press Enter.

Last Edit Location

The Last Edit Location action Ctrl+Shift+Backspace | Cmd+Shift+Backspace allows you to
navigate to your last edit. If you continue to activate this command, your cursor will move
to the file/location of your previous edit, and so on.

Type Hierarchy

Android uses Java, an object-oriented programming language. One of the hallmarks of any
object-oriented language is inheritance, which facilitates code reuse and polymorphism.
With the MainActivity. java file active in the Editor, press Ctrl+H to toggle open the
Hierarchy tool window. There you will see a cascading series of objects, all of which can
trace their ancestry to the progenitor of all objects in Java called Object. Keep in mind that
the Navigate » Type Hierarchy action will work only when the active tab in the Editor is a
Java source file.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 2: Navigating Android Studio 43

Declaration

The Declaration action allows you to jump to the original definition of methods, variables,
and resources. Another way to activate this action is by holding the Ctrl|Cmd key down while
rolling your mouse over methods, variables, or resources in your file. If the element becomes
underlined, you may navigate to its declaration by left-clicking the element while continuing
to hold down the Ctrl|Cmd key. In MainActivity.java, click your cursor anywhere in the
method setContentView(...) and press Ctrl+B | Cmd+B. You will be taken immediately to
this method’s declaration, which is located in one of MainActivity’s superclasses called
ActionBarActivity.java.

Finding and Replacing Text

Finding and replacing text is an essential part of programming, and Android Studio has
a powerful suite of tools to help you do just that. This section covers some of the most
important tools. Table 2-4 lists them for you.

Table 2-4. Find and Replace

Command PC Keys Mac Keys
Find Ctrl+F Cmd+F

Find in Path Ctrl+Shift+F Cmd+Shift+F
Replace Ctrl+R Cmd+R
Replace in Path Ctrl+Shift+R Cmd+Shift+R
Find

The Find action is used to find text occurrences within a single file. In MainActivity. java,
press Ctrl+F | Cmd+F to bring up a search bar that appears along the top of the Editor.

Type action in the search box of the search bar. You will notice that action is immediately
highlighted in yellow throughout your file. You will also notice small green ticks in the marker
bar indicating the locations of the found text. Rolling your mouse over the double right-
arrows on the find bar will display advanced search options.

Find in Path

The Find in Path action allows you to search in a much wider scope than with the Find action
described previously. You can also use regular expressions, and delimit results with

a file mask. Press Ctrl+Shift+F | Cmd+Shift+F and type hello in the search box of the search
bar along the top of the Editor. By default, the search scope in Find in Path is set to Whole
Project, though you can limit the search scope to a particular directory or module. Accept
the default of Whole Project and click the Find button. The results appear in the Find tool
window. Clicking an entry in the Find tool window immediately opens the enclosing file as

a new tab of the Editor and jumps to that occurrence.

44 CHAPTER 2: Navigating Android Studio

Replace

The Replace action Ctrl+R | Cmd+R is used to replace a text occurrence in a single file, and
the functionality of Replace is a superset of Find. The safer way to replace text is to use the
Refactor » Rename command, which we will cover later.

Replace in Path

The Replace in Path action Ctrl+Shift+R | Cmd+Shift+R is a superset of Find in Path.
However, it’s almost always better to use Refactor » Rename than to use Replace in Path,
so use this command with extreme caution as you could introduce errors.

Summary

In this chapter, we’ve discussed the Editor and the tool windows that cluster around the
Editor. We’ve discussed how to use the tool buttons and reposition them. We’ve also
discussed those tool windows that are used for navigation and the major Ul elements of the
IDE, including the main menu bar, the toolbar, the status bar, the gutter, and the marker bar.
We’ve also discussed how to search and navigate by using menus and keyboard shortcuts,
as well as using Find and Replace. Finally, we discussed how to use the help system in
Android Studio. Most important, we’ve established a lexicon of Ul elements in Android
Studio to which we will refer in subsequent chapters.

Chapter

Programming in Android
Studio

This chapter covers how to write and generate code in Android Studio. Android Studio uses
its knowledge of object-oriented programming to generate extremely relevant and well-formed
code. Features covered in this chapter include overriding methods, surrounding statements
with Java blocks, using templates to insert code, using auto-completion, commenting code,
and moving code. If your goal in reading this book is to master Android Studio, you will want
to pay particularly close attention to this chapter because the tools and techniques described
herein will have the greatest effect on your programming productivity.

Let’s get started. If the HelloWorld app you created in Chapter 1 is not already open, go
ahead and open it now.

Using Code Folding

Code folding is one way of conserving screen real-estate in the Editor. Code folding allows
you to hide particular blocks of code so that you can focus exclusively on those blocks that
are of interest to you. If MainActivity.java is not open, open it by pressing Ctrl+N | Cmd+O
and typing Main. Open the MainActivity. java class by pressing Enter, as seen in Figure 3-1.

iEnter class name:] Include non-project classes (Ctrl+N) Y *

(GF-
|

0O & PP hctivicy (gerber.apress.com.hel‘koworldl app 3

Figure 3-1. Use the Enter Class Name dialog box to open MainActivity.java

45

http://dx.doi.org/10.1007/9781430266013_1

46 CHAPTER 3: Programming in Android Studio

If line numbers are not showing by default, navigate to Help » Find Action. Type show
line numbers and select the option for the Show Line Numbers Active Editor, as shown in
Figure 3-2.

" Enter action or option name: [] Include non-menu actions (Ctrl+Shift+A)

AleY:now 1ine number

Show Line Numbers Active Editor

Show line numbers Settings

Figure 3-2. Use the Enter Action or Option Name dialog box to show line numbers

As you observe the line numbers in MainActivity. java, you will notice something odd: the
line numbers are not continuous. In Figure 3-3, the line numbers start at 1, 2, 3 and then
skip to 7, 8, 9. Look carefully at line 3 in Figure 3-3. You will notice that there’s a plus symbol
enclosed in a box to the left of the import statement and an ellipsis following it. If you look
carefully at your own code, you will also notice that the ellipsis is highlighted in pale green.
All of these visual elements are signaling you that Android Studio is hiding a block of code
that has been folded, or collapsed.

package com.apress.gerber.helloworld;

1
2
3 Himport ...
i,
8
9

g)

% public class MainActivity extends ActionBarActivity |
10
11 Override

12ief B2 protected void onCreate (Bundle savedInstanceState) {
13 super.onCreate (savedInstanceState);
14 setContentView (R.layout.activity main) ;l

15 B }
16

Figure 3-3. Folded block of code at the import statement

A fine dotted line called the folding outline is located along the length of the left margin,
between the gray gutter and the white Editor. The folding outline can contain three icons:
the plus icon enclosed in a box (as in line 3 of Figure 3-3) and the up- and down-arrows,
which have horizontal lines (see lines 12 and 15 of Figure 3-3) inside them. The down-arrows
indicate the beginning of a foldable block of code, whereas the up-arrows indicate the end
of a foldable block of code. A plus box, as mentioned, indicates that a block of code has
been folded. Clicking any of these icons toggles the corresponding block to either its folded
or unfolded state. Table 3-1 contains descriptions and keyboard shortcuts for all the
code-folding operations.

CHAPTER 3: Programming in Android Studio 47

Table 3-1. Code-Folding Options

Option PC Keys Mac Keys Description

Expand Ctrl+Numeric-Plus Cmd-+Numeric-Plus Expands the collapsed block
where your cursor is located

Collapse Ctrl+Numeric-Minus Cmd-+Numeric-Minus Collapses the expanded block
where your cursor is located

Expand All Ctrl+Shift+Numeric-Plus ~ Cmd+Shift+Numeric-Plus ~ Expands all code in a window

Collapse All Ctrl+Shift+Numeric-Minus Cmd+Shift+Numeric-Minus Collapses all the code in a
window

Toggle Fold Ctrl+Period Cmd+Period Collapses/expands the block
where your cursor is located

Place your cursor anywhere inside the onCreate() method of MainActivity.java. Now press
Ctrl+Period | Cmd+Period a few times to toggle this block expanded and collapsed. Also

try using the Expand keyboard shortcut Ctrl+Numeric-Plus | Cmd+Numeric-Plus and the
Collapse keyboard shortcut Ctrl+Numeric-Minus | Cmd-+Numeric-Minus.

Finally, use your mouse to toggle blocks folded and unfolded by clicking the code-folding
icons in the folding outline. Keep in mind that folding a single block, multiple blocks, or
even all the blocks in a file simply removes them from your view in order to save screen
real-estate. The compiler, however, will still try to compile them when you build. Similarly,
folding a block containing problematic or erroneous code will not remove any warnings or
errors from the marker bar. You can change the code-folding options by selecting the menu
option Settings » Editor » Code Folding.

Performing Code Completion

Most contemporary IDEs offer some form of code completion, and Android Studio is no
exception. Android Studio is always ready to help, even if you’re not actively seeking help.

In practice, this means that Android Studio will suggest various options for completing your
code by default as you type. The suggestion list generated by Android Studio is not always
perfect, but the suggestions are ordered according to best practices, and they typically
conform to proper naming conventions. Android Studio understands both the Android SDK
and the Java programming language very well; in fact, it probably knows these subjects far
better than you do. If you approach this tool with humility and an eagerness to learn, you will
end up looking like a rock star, no matter what your former programming experience may be.

The code-completion features are context sensitive, insofar as the suggestions offered to
you will be different depending on the scope of your cursor. If you’re typing code inside class
scope, the code-completion suggestions will be different from those suggested to you if you
were typing inside method scope. Even if you choose not to accept the code-completion
suggestions, you should pay attention to them for the aforementioned reasons.

48 CHAPTER 3: Programming in Android Studio

Table 3-2 lists the four kinds of code completion in Android Studio:

Default code completion occurs automatically as soon as you start typing.

Basic code completion behaves like Default code completion but also
displays a Javadoc window next to the currently selected item in the

suggestion list.

SmartType code completion also displays Javadoc but also generates a
more selective and relevant suggestion list.

Cyclic Expand Word cycles through words already used in your source
document and allows you to select them.

Table 3-2. Code-Completion Options

Option PC Keys

Mac Keys

Description

Default None

Basic Ctrl+Space

SmartType Ctrl+Shift+Space

Cyclic Expand Alt+/

Word

Cyclic Expand Alt+Shift+/

Word (Backward)

None

Ctrl+Space

Ctrl+Shift+Space

Alt+/

Alt+Shift+?

Default code-completion behavior.
Android Studio displays a suggestion
list next to your cursor as you type.
You can use your up- and down-arrow
keys to navigate among entries in the
suggestion list, and the Enter key to
select an entry.

Basic code completion functions
like Default code completion, but
also displays the Javadoc window
next to the currently selected entry.
Clicking the up-arrow icon in the
Javadoc window displays detailed
documentation.

SmartType code completion functions
like Basic, but generates a more
selective and relevant suggestion list.

Offers words already used in your
document. Cycles up.

Offers words already used in your
document. Cycles down.

Let’s start coding to demonstrate how code completion works. Right-click (Ctrl-click on
Mac) on the package com.apress.gerber.helloworld and choose New » Java Class to
bring up the Create New Class dialog box, shown in Figure 3-4. Name this class Sandbox

and click OK.

CHAPTER 3: Programming in Android Studio 49

Name: |Sandbox] Tl

Kind: | € Class n

m | Cancel ‘

Figure 3-4. Create New Class dialog box

Inside the enclosing brackets of the Sandbox class in Sandox. java, begin to define a member
by typing private Li, as shown in Figure 3-5. A code-completion menu appears with a list

of possible choices for you to complete your code. Use the up- and down-arrow keys to
navigate the code-completion menu. Select the option, List<E>, with your down-arrow key
and press Enter.

public class Sandbox {

~1 &

private LiL
} £ 6 LinkedHashMap
10 €t LinkedHashSet

o o

& LinkedList
(v]

c
o

List<E>» (java.util)

& ListIterator

& ListResourceBundle
& LinkageError

& LinkedBlockingDeque
& LinkedBlockingQueue
& LineNumberReader

OO O e =

T i d meal AT T =

ress Cirl+Period to choose the selected (or first) suggestion and insert a dot aftenwards >> T

¥

Figure 3-5. A code-completion menu appears when you start typing

The default behavior in Android Studio is to display the code-completion suggestion list
when you start typing. You do not need to activate any keyboard shortcuts to invoke Default
code completion—it happens automatically. You should now have a line of code that reads
private List, as shown in Figure 3-6. Directly following the word List, type the left angle
bracket (<) used for defining generics in Java. Notice that Android Studio closes the bracket
clause with a closing right angle bracket and places your cursor inside the brackets.

public class Sandbox |

gTokenizer 1 [l < Android API 19 Platform > &

ctMath

b StringBuffer public final chss
StringBuilder String
b StringIndexCutOfBoundsException extends Qhisct

Streamtandler
o StreamCorruptedException

anTokenizer

idhene e o
¥¥Fo oo

StringCharacterterator

e Eamdmalinndan

Figure 3-6. Code completion of a list with String as the generic

50 CHAPTER 3: Programming in Android Studio

Type Str inside the angle brackets and press Ctrl+Space to invoke Basic code completion.
You will notice that a Documentation for String Javadoc window appears next to the
currently selected item (String) in the suggestion list. Scroll through the Javadoc window

to see the Javadoc documentation for String. Click the up-arrow in the Javadoc window to
display the detailed APl documentation for String in your default browser. Return to Android
Studio and select String as the generic class that you will use when defining List<String>
by pressing the Enter key.

One of the best features of Android Studio is that it suggests variable names for you. Type a
space directly after private List<String> and activate Basic code completion by pressing
Ctrl+Space. Android Studio generates a suggestion list, but none of the variable names is
sufficiently descriptive, so type mGreetings instead. Lower-case m stands for member (a.k.a.
field), and prefixing class member names with m is the naming convention in Android. Likewise,
static class members are prefixed with lowercase s. You are not required to follow this naming
convention, but your code will be more easily understood by others if you do. Keep in mind
that local (method-scoped) variables do not follow the m and s prefix-naming convention.

Modify your line of code so that it now reads private List<String> mGreetings = new.
Invoke SmartType code completion by pressing Ctrl+Shift+Space. Select ArrayList<>()

to complete this statement, including the terminating semicolon, as seen in Figure 3-7.
SmartType code completion is similar to Basic code completion except that it factors in a
wider scope of variables than both Default and Basic code completion when generating items
in its suggestion list. For example, when using SmartType code completion on the right side
of an assignment operator, the suggestion list will often include relevant factory methods.

Note If your JDK in Android Studio is set to 7 or higher, then generated code from code-completion
may use Diamond notation. For example, ArrayList<String> may appear as ArrayList<> on the
right side of a declaration with assignment statements using generics, such as the one in Figure 3-7.

14
16 private List<String> mGreetings = new ArrayList<String>()r
17
18
19

20

Figure 3-7. SmartType code completion

Cyclic Expand Word has a fancy name, but it’s actually very simple. Invoke Cyclic Expand
Word by holding down the Alt key while pressing forward slash several times. The words
offered to you are the same ones that appear in your document. As you cycle through the
words, pay attention to the yellow highlighting. Now invoke Cycle Expand Word Backward
by holding down the Alt and Shift keys while pressing the forward slash (question mark on
Mac) several times. Notice that the offered/highlighted words now cycle down and away
from your cursor, rather than up and away.

CHAPTER 3: Programming in Android Studio 51

Commenting Code

If you’ve done any programming at all, you know that comments are lines of code that

are ignored by the compiler but that contain messages or metadata that are important to
coders and their collaborators. Comments may be line comments that start with two forward
slashes or block comments that begin with a forward slash and an asterisk and end with an
asterisk and a forward slash. From the main menu, you can activate comments by choosing
Code » Comment. However, the best way to activate comments is by using the keyboard
shortcuts listed in Table 3-3.

Table 3-3. Commenting Options

Option PC Keys Mac Keys Description

Toggle Comment Line Ctrl+/ Cmd+/ Toggles a line between comment or
uncomment using Java line comment style
(e.g., // ...) You may apply this action to more
than one line by selecting those lines.

Toggle Comment Block Ctrl+Shift+/ At+Cmd+/ Toggles selected text between commented
block or uncommented block using Java
block comment style, such as /* ... */.
Applying a comment block to selected
text will include all the selected text in the
comment block.

Type refactor initialization to constructor above the mGreetings declaration. Press Ctrl+/ |
Cmd+/ to convert this text to a comment, as shown in Figure 3-7. Experiment with toggling
this comment on and off by using the keyboard shortcut Ctrl+/ | Cmd-+/.

Using Code Generation

When used appropriately, code generation is the feature that will save you the most
time. Code generation has the power to generate a variety of methods for you, including
constructors, getters, setters, equals(), hashCode(), toString(), and so on.

Before using code generation, let’s verify that Android Studio is configured properly to ignore
the member name prefixes m and s. Click File » Settings » Code Style » Java » Code
Generation to bring up the Settings dialog box with the Code Generation tab selected. If the
Field and Static Field text boxes do not contain m and s respectively, type them there now
and click Apply and then OK, as shown in Figure 3-8.

52 CHAPTER 3: Programming in Android Studio

"
)

) Code Style » Java

Scheme: | Default (3) Manage...
Default (3) Set from...
- Tabs and Indents | Spaces | Wrapping and Braces | Blank Lines | JavaDoc | Imports | Amrangement = Code Generation
Maming Order of Members
(V] Prefer longer names Static fields
Inst field
Name prefic Name suffic: fiaka b +
Constructors
Field: [m l Static methods
Static field: |5

Static inner classes

Parameter: | | Inner classes

| |
| | | Instance methods
| |
| |

Local variable: |

Final Maodifier
|:| Make generated local variables final

I:l Make generated parameters final

Figure 3-8. Adding m and s to Field and Static Field in the Code Generation tab

Constructors

Place your cursor in the class scope of Sandbox. java. To generate a constructor in Android
Studio, press Alt+Insert | Cmd+N and select Constructor. The Choose Fields to Initialize

by Constructor dialog box, shown in Figure 3-9, enables you to select class members

as parameters. We’d like a no-argument constructor, so click the Select None button.

It’s common in Java to overload constructors to take different types and numbers of
parameters. You could, for example, invoke this dialog box again and generate a constructor
that takes a List<String> as a parameter and assigns this parameter to our member
mGreetings:List<String>.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 3: Programming in Android Studio 53

4 Choose Fields to Initialize by

2@z =

€ com.apress.gerber.helloworld.app.Sandbox
1) B mGreetings:List<String>

“ | Select None | | Cancel |

Figure 3-9. Choose Fields to Initialize by Constructor dialog box

Getters/Setters

Java classes are typically encapsulated, which means that class members are most often
declared as private, and the public interface to these members is provided via public
accessor (getter) and public mutator (setter) methods. Click to place your cursor in the
class scope of Sandbox. java and press Alt+Insert | Cmd-+N. You will notice that there is

one option for Getter, one for Setter, and one for both Getter and Setter. Getter and setter
methods typically come in pairs, so unless you have a good reason to omit one or the other,
it’s best to generate both in one fell swoop. Select Getter and Setter from the list, as shown
in Figure 3-10. In the subsequent Select Fields to Generate Getters and Setters dialog box,
select mGreetings:List<String> from the list and click OK. Your class now has a getter and
a setter for mGreetings, as shown in Figure 3-11. Notice that the generated code ignored the
m prefix when generating the method names, because you declared m and s as prefixes in
Settings earlier.

54 CHAPTER 3: Programming in Android Studio

Generate

Constructor

Getter

Setter

equals() and hashCode()
toString()

Override Methods...
Delegate Methods...
Copyright

Figure 3-10. Generating the getter and setter

10 public class Sandbox {

11

12]

13§ ; //refactor initialization to constructor

14] | private List<String> mGreetings = new Arraylist<String>():
15
16
17,
18;
19
20
21? public List<String> getGreetings() {
2215 return mGreetings:

23 }

24 |
25 © public void setGreetings(List<String> greetings) {
26 i nGreetings = greetings;

27 }

28!
29108 | 1

ani il

public Sandbox() {

}

Sy

Figure 3-11. Generated getter and setter methods

CHAPTER 3: Programming in Android Studio 55

Override Methods

Code generation understands class hierarchy, so you can override methods contained in
any superclass or implemented interface. Sandbox. java is a simple Plain Old Java Object
(POJO). Now you modify the Sandbox class so it extends RectShape. When you type
extends RectShape, the word RectShape may be highlighted in red. If this is the case, press
Alt+Enter to import the RectShape class, as shown in Figure 3-12.

-

10 Dimport android.graphics.drawable.shapes.RectShape;
11 import java.util.ArrayList;

12 import java.util.Llist;

13

14 public class Sandbox extends RectShape {

15

Figure 3-12. Extending the superclass

If you invoke Hierarchy View by pressing Ctrl+H, you will see the class hierarchy of

Sandbox with RectShape, Shape, and Object as its ancestors, as you can see by examining
Figure 3-13. Now press Alt+Insert | Cmd+N and select Override Methods. Let’s override

the hasAlpha() method from Shape, as shown in Figure 3-14. The convention since version
Java 5 is to annotate overridden methods with @0verride, so let’s leave the Insert @Override
check box selected. The @0verride annotation tells the compiler to verify both the name and
the signature of the method to ensure that the method is, in fact, being overridden. Modify
the return statement of hasAlpha() to always return true.

56 CHAPTER 3: Programming in Android Studio

(2 | . . =

»LREIE = =
v E

'€ android.graphics.drawable.shapes.RectShape
m & draw(canvas:Canvas, paint:Paint):void
m 7 onResize(width:float, height:float):void
m & clone():RectShape

v) android.graphics.drawable.shapes.Shape

@ & hasAlpha():boolean
v (€ java.lang.Object
m & equals(o:Object):boolean
m 7 finalize(:void
m & hashCode():int
m G toString():String

C] Copy JavaDoc

(V] Insert @Qverride “

Figure 3-13. Selecting methods to override/Implement with RectShape

32 @0override

33'01[0 public boolean hasAlpha() {
il | return true:

3 |& 1}

Figure 3-14. Modifying the hasAlpha() method

CHAPTER 3: Programming in Android Studio 57

toString() Method

Android Studio can generate toString() methods for you. Let’s create a toString() method
for Sandbox and include the mGreetings member. Press Alt+Insert | Cmd+N and select
toString(). Select your one and only member, mGreetings, and click OK. Android Studio
generates a return string such as "Sandbox{" + "mGreetings=" + mGreetings + '}, as
shown in Figure 3-15. If you had multiple members in our class and selected them, they too
would be appended to this method’s return string. Of course, the code that is generated by
toString() is not set in stone; you may change this method however you want, so long as it
returns a String.

7 EOverride

ieiel O public String toString() {

19 return "Sandbox{" + "mGreetings=" + mGreetings + '}'>
10 (=] }

11 1

Figure 3-15. Generate the toString() method

Delegate Methods

Android Studio knows about your class members and thus allows you to delegate behavior
from a proxy method defined in your class to a method of your class member. That sounds
complicated, but it’s easy. To show you how the Delegate Methods option works, let’s jump
right into the code.

In Sandbox. java, place your cursor in class scope. Press Alt+Insert | Cmd+N and then
select Delegate Methods. Select the mGreetings:List<String> and press OK. The List
interface has a lot of methods to which you can delegate behavior. For simplicity, choose
add(object:E):boolean, as shown in Figure 3-16. If you want to delegate multiple methods,
hold down the Ctrl key (Cmd key on Mac) while selecting those methods. Click OK.

58 CHAPTER 3: Programming in Android Studio

LE =
v (I java.util.List

m & add(location:int, object:E):void

m & add(object:E):boolean
‘B addAll{location:int, collection:Collection<7? exten
addAll(collection:Collection<? extends E>):boole
clear():void
contains(object:Object):boolean
containsAll(collection:Collection<?>):boolean
equals(object:Object):boolean
get(location:int):E
hashCede():int
indexOf(object:Object):int
isEmpty():boolean
iterator():Iterator<E>
lastindexOf(object: Object):int
listlterator():ListIterator<E>
listlterator(location:int):Listlterator<E>

remove(location:int):E

&
E

2800600606 06666666

remove(object:Object):boolean

]
B
B
(]
B
(-
(-]
>
-]
(]
[
-]
B
B
(]
(]

e@ee 6

removeAll(collection:Collection<?>):boolean

(] Copy JavaDoc m

Figure 3-16. Selecting methods to generate delegates

The generated add() method in Sandbox. java is now a proxy that delegates behavior

to the add() method of the mGreetings member, as shown in Figure 3-17. Notice that

the parameter to the add() method is defined as a String to match mGreetings’ generic
definition, List<String>. Delegated methods are not overridden methods, so you can
rename your proxy method to whatever you want, but the name add() makes perfect sense,
so go ahead and leave the name as it is.

43 © public boolean 2dd({String cbject) {
44 return mGreetings.add (ocbject):
s o)

lasi |

Figure 3-17. Generated add() method

CHAPTER 3: Programming in Android Studio 59

Inserting Live Templates

Android Studio comes with many templates that allow you to insert predefined code directly
into your source files. In many IDEs, the generated code is just pasted from a template
without regard to scope; however, Android Studio’s templates are scope-aware and can
integrate variable data as well.

Before you start using live templates in Android Studio, let’s explore the existing live
templates and create one of our own. Navigate to File » Settings » Live Templates. Select
the Plain template group. Now click the green plus button in the upper-right corner and
select Live Template. Populate the Abbreviation, Description, and Template text fields, as
shown in Figure 3-18. Before this template can be applied, you must click the Define button,
which looks like a blue hypertext link along the bottom of the window. Now select Java and
select all the scopes (Statement, Expression, Declaration, and so on). Click Apply.

) | Live Templates

By default expand with | Tab [\j]

V| Groovy + h
¥ html/xml -
V| iterations 1
V] Maven ol
21 other
ﬂ output
V| plain
[¢b (comment block
|7| psf tic fina
@psfi public static final int
[psts
™ st (String
[V thr throw nev
21 surround
V] Zen HTML 71 Everywhere
M zenxsL O HTML
[xmL
IZI Jave
IZI Statement
Abbreviation: | cb Description: | comment block |E Expression
Template text: (V] Declaration
TEPTTTIIIIIIT [Comment
SSELECTIONS 4] String
Fiddidifdddid FRiFiidied J J [V Smart type completicn
[V Other
[Groowy
O Maven
|._| Other

Applicable in Java; Java: statement, expression, declaration, comment, string, smar...Change

Figure 3-18. Create a live template called cb (comment block)

60 CHAPTER 3: Programming in Android Studio

You just created a custom live template called cb, which will be available while coding in
any Java source file and in any scope. The red word $SELECTION$, shown in Figure 3-18, is a
variable. You will see this variable in action shortly. The Live Template options are described
in Table 3-4.

Table 3-4. Live Template Options

Option PC Keys Mac Keys Description

Insert Live Template Ctrl+J Cmd+J Invoke a scope-sensitive Live Template list. Will
insert template code into your document.

Surround with Live Ctrl+Alt+J Cmd+Alt+J Invoke a scope-sensitive Surround with Live

Template Template list. Will surround the selection with a

scope-sensitive live template.

Before leaving the Settings page for live templates, take a quick look at one of the existing
live templates whose abbreviation is psfs, located in the Plain template group. Click psfs
to inspect its contents. You will notice that this template generates a String constant with
public static final String and that it is available in Java and Groovy declaration scopes
only. Click OK to return to the Editor.

In the declarations section of Sandbox. java, underneath the definition of mGreetings, type
psfs and then invoke live templates by pressing Ctrl+J | Cmd+J and then press Enter.
Complete this statement by giving this constant a name and an assignment like so: public
static final String HELLO = “Hello Sandbox”;.

Note In Java, the naming convention for constants is all caps.

Above the constructor, type the word CONSTRUCTORS. Now transform this word into

a comment block that will catch other programmers’ attention. Select the entire word,
CONSTRUCTORS, and then press Ctrl+Alt+J | Cmd+Alt+J to invoke Surround with Live
Template. Select cb from the Live Templates list and press Enter, as shown in Figure 3-19.
You just applied the live template you created earlier.

28
129 }
130

Figure 3-19. Apply the live template called cb (comment block)

CHAPTER 3: Programming in Android Studio 61

Moving Your Code

Android Studio understands how code blocks are delimited, so moving either lines or blocks
of code is easy and intuitive. The difference between Move Statement and Move Line is that
Move Statement respects both boundaries and scope, whereas Move Line respects neither.
If you choose to move a statement of code with Move Statement, the statement will remain
inside the boundaries of its enclosing block scope. If you move that same statement with
Move Line, Android Studio treats the statement as a simple line of text, and will move it
wherever you want it to go.

You can also move entire blocks of code. With Move Statement, all you need to do is

place the cursor anywhere on the opening line (the one with the open curly brace) of the
block you want to move and press Ctrl+Shift+Down | Cmd+Shift+Down or Ctrl+Shift+Up |
Cmd+Shift+Up. The entire block will move en masse while respecting the boundaries of the
other blocks and staying within the boundaries of its enclosing scope. Move Line doesn’t
understand scope or boundaries, but you can still move multiple lines by selecting them first
before applying the Move Line Up or Move Line Down operations, which are Alt+Shift+Up
and Alt+Shift+Down, respectively, on both PC and Mac.

To understand move operations in Android Studio, it’s best to just do them. Let’s start

by creating a statement in our add() method. Directly after the line that reads return
mGreetings.add(object);, press Enter to start a new line and type soutm. Then press

Ctrl+J | Cmd+d to invoke Live Template, which produces System.out.println("Sandbox.
add");. You may have noticed that your new line of code will not be reached because the
return statement is above it, as shown in Figure 3-20. Let’s move this statement with Move
Statement Up. While holding down Ctrl|Cmd and Shift, press the up-arrow key multiple
times. Android Studio repositions the statement, but does not let you accidentally move this
statement into a scope where it may not make any sense. Try this operation again with Move
Line (Alt+Shift+Up) and observe its behavior again.

& public boolean add(String object) {
46 return mGreetings.add (ocbject):
47 System.out.println("Sandbox.add");

Figure 3-20. Move Statement and Move Line

Let’s try another example to demonstrate the power of Move Statement by moving your
constructor to the bottom of our class. Make sure that there are no empty line breaks
between the Sandbox () declaration and the comment block above it. Now, place your cursor
anywhere on the declaration line of Sandbox() and invoke Move Statement Down by holding
down the Ctrl|Cmd and Shift keys while pressing the down-arrow key repeatedly until

your constructor is the last method in the class. Notice that the entire block, including the
comment, leapfrogged down to the bottom of the class, avoiding the other methods along
the way. The Move Code operations and their keyboard shortcuts are described in Table 3-5.

62 CHAPTER 3: Programming in Android Studio

Table 3-5. Move Code Options

Option PC Keys Mac Keys Description

Move Statement Ctrl+Shift+Down Cmd+Shift+Down Moves a statement or statements down,

Down within the boundaries of scope. If a block
is moved, the entire block will leapfrog en
masse to the next syntactically correct
location.

Move Statement Cirl+Shift+Up Cmd+Shift+Up Same as Move Statement Down, but
Up moves up.

Move Line Down Alt+Shift+Down Alt+Shift+Down Moves statement(s) or line(s) down. Does
not respect scope boundaries or syntax.

Move Line Up Alt+Shift+Up Alt+Shift+Up Same as Move Line Down, but moves up.

Styling Your Code

Code style conventions evolve. There are no hard-and-fast rules about the number of
spaces you should place after your methods, or whether the opening curly brace should
appear on the same line as the method signature or just below it. Organizations tend to
define their own code styles, but code style also varies from one programmer to another;
and you too probably have a code style with which you’re comfortable. Fortunately, Android
Studio makes styling and organizing your code easy. Before you start styling your code,
let’s examine the Settings for Code Style. Choose File » Settings » Code Style to bring up
the Settings dialog box, shown in Figure 3-21. Java and XML are the languages we’re most
interested in for Android. Toggle open Code Style in the left pane, select Java, and examine
each tab in the Settings window.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 3: Programming in Android Studio 63

¥ Code Style
General
Groovy
HTML

XML
* Compiler
» Copyright
File Colors
File Encodings
Gant
Gradle
Inspections
Language Injections
= Maven
Schemas and DTDs
Scopes
Spelling
> Tasks
Template Data Languages
Terminal

v

* Version Control
IDE Settings
Appearance
Bitbucket
Conscle Felding
- Debugger
¥ Editor
Smart Keys
Appearance
¥ Colors & Fonts
Font
General
Language Defaults
Console Colors

Project Settings [HelloWorld] s [e
eme: | androi

! Code Style » Java

7 Keep when reformatting
Line breaks
Comment at first celumn
Control statement in one line
Multiple expressions in one line
Simple blocks in one line
Simple methods in one line
Simple clssses in one line
Ensure right margin is not exceeded
7 Braces
In class declaration
In method declarstion
Other
¥ Extendsfimplements list
Align when multiline
Extendsfimplements keyword
¥ Throws list
Align when multiling
Align ‘throws' to method start
Throws keyword
¥ Method declaration parameters
Align when multiline
Mew line after ('
Place)" on new line
Method call arguments
Align when multiline

4

Take pricrity over call chain wrapping

New line after '{
Place) en new line
¥ Method parentheses
Align when multiline
¥ Chained method calls
Alian when multiline

B3 | mensge.. |

Tabs end Indents | Spaces w"PP"B""ml Blank Lines | JevaDoc | Imports | Amangement | Code Generation

O0000RRE

End of line
End of line
End of line
Do not wrap
[}

Do not wrap
Do not wrap

Set from_.

public class ThizIsASampleClass exten
private int f1 = 1;
private String field? = "";

public woid fool(int i1, int i2,
1

public static void longerMechod()

int
i=0;

int[] & = new int[]{1, 2, 0x0
int varl = 1;
int varz = 2;
fool (0x0051, (x0052, Ox0CS3,
int x= (3+4+5+6 * (T
String =1, =2, =3;
=l = 22 = 23 = "0123456789014
assert L1 +) +k+1l+n+m/
int y=2>327+8+5:1
super.gecFoo().feo() .gecBar()

label:

if (2 < 3) return;
else if (2 > 3) return;
else return;

BEZE | concol | [oeely | [Hep |

Figure 3-21. Settings dialog box with Code Style » Java selected and showing the Wrapping and Braces tab

Experiment with these settings by selecting/deselecting the check boxes in the middle pane
of the various tabs and notice how the sample class in the right pane changes accordingly
to suit your style. Click the Manage button along the top to define a new scheme. Now click
Save As and give your scheme a name, such as android, and click OK. If you make further
changes to a saved scheme, click the Apply button to apply them. When you format your
code with Ctrl+Alt+L | Cmd+Alt+L, the settings you chose in the Code Style tabs will be
applied. The code-organizing options are described in Table 3-6.

64 CHAPTER 3: Programming in Android Studio

Table 3-6. Code-0Organizing Options

Option PC Keys Mac Keys Description

Auto-Indent Lines Ctrl+Alt+l Ctrl+Alt+l Applies indents to the currently selected line or lines
according to scheme settings.

Optimize Imports Ctrl+Alt+O Ctrl+Alt+O Removes any un-used imports from import statements.
Android Studio is so vigilant about keeping imports
clean and relevant, that this command is practically
redundant.

Rearrange Code None Re-arranges the order of code elements according to
the rules established in the Arrangement settings.

Reformat Code Ctrl+Alt+L Cmd+Alt+L Applies the code style settings for a particular scheme.

Auto-Indent Lines

Auto-Indent Lines is useful for keeping lines indented properly as you code. The rules that
govern tabs and indents in Java are accessed via File » Settings » Code Style » Java »
Tabs and Indents. Auto-Indent Lines is applied to the current line, or if you have multiple
lines selected, to all the selected lines.

In Sandbox. java, select an entire method block of code and press Tab. The block should
move one tab distance to the right. Now place the cursor on the first line of that block and
press Ctrl+Alt+l on both PC and Mac. You will notice that Auto-Indent repositions that line to
the appropriate indent position, although the rest of the method block remains unaffected.
Now select all the code in the class by pressing Ctrl+A | Cmd+A and again press Ctrl+Alt+l.
This time, proper indentation is applied to the entire file.

Rearrange Code

Arrangement governs the order of the elements in your code. For example, most

people prefer to keep class member declarations at the top of their classes, followed by
constructors, followed by getters and setters, and so on. You can edit the Arrangement
settings from the Arrangement tab accessed via File » Settings » Code Style » Java »
Arrangement.

In the previous section, you moved the constructor to the bottom of the class. This is

not typically where it belongs. Choose Code » Rearrange Code from the main menu.

You will notice that your constructor has moved back to its expected position, below the
declarations section. Rearrange Code performed this rearrangement operation according to
the rules in the Arrangement settings.

CHAPTER 3: Programming in Android Studio 65

Reformat Code

Reformat Code is the most powerful of the Code Style actions, as it gives you the option

to apply all the code style options defined in the Code Style settings. As you’ve already
seen, the Code Style settings can be accessed from the main menu via File » Settings »
Code Style. In addition, Reformat Code allows you to reformat the currently selected file, or
every file of the same type and directory. Furthermore, Reformat Code allows you to chain
Rearrange Entries (which will apply Rearrange Code on Java files), and Optimize Imports
onto the command, as shown in Figure 3-22. Try reformatting Sandbox. java by pressing
Ctrl+Alt+L | Cmd+Alt+L.

(O File 'C:\dev\andr\book\ch03\HelloWorld\app\src\main\java\com\apress\gerber\helloworld\app\Sandbox java'

(®) All files in directory C:\dev\andr\bock\ch03\HelloWorld\app\src\main\java\com\apress\gerber\hellowerld\app
] Optimize imports
™ Reamrange entries

m | Cancel | Help ,

Figure 3-22. Reformat Code dialog box with Rearrange Entries selected

Surrounding With

Surround With (Ctrl+Alt+T | Cmd+Alt+T) is a superset of the functionality found in Surround
with Live Template (Ctrl+Alt+J | Cmd+Alt+J). However, Surround With also includes options
to surround a selected statement or statements with a Java block such as if/else, for,
try/catch, and so on. Although the simple code in your Sandbox class does not threaten to
throw any checked exceptions, surrounding statements that threaten to throw exceptions
with try/catch blocks is among the best application of Surround With; and this is probably
why the keyboard shortcut Ctrl+Alt+T | Cmd+Alt+T includes a T. The Surround With
operations are described in Table 3-7.

Table 3-7. Surround With Options

Option PC Keys Mac Keys Description

Surround With Ctrl+Alt+T Cmd+AIR+T Surrounds the selected statement or
statements with a Java code block
such as if/else, for, try/catch, etc.

Unwrap/Remove Ctrl+Shift+Delete = Cmd+Shift+Delete Unwraps code blocks from selected
statement or statements.

66 CHAPTER 3: Programming in Android Studio

In the add() method of Sandbox. java, you want to ensure that there are no duplicates. Let’s
surround the return mGreetings.add(object); with an if/else block, as shown in Figure 3-23.
Select that entire line and press Ctrl+Alt+T | Cmd+Alt+T to activate Surround With. Now
select if/else from the menu. In the parentheses of the if statement, type !mGreetings.
contains(object) and in the else block type return false;.

4! |o public boolean zdd(String object) {

145 System.out.println("Sandbox.add");
46 if (!mGreetings.contains(cbject)) {
47 return mGreetings.add (object);
48 } else {

49 return false;

50 }

51 & }

Figure 3-23. Wrapping and unwrapping blocks of code with Surround With

Say your business rules have changed and you don’t care about duplicate entries in
mGreetings anymore. Use Unwrap/Remove to remove the if/else block you just created.
Place your cursor anywhere on the return mGreetings.add(object); statement, press
Ctrl+Shift+Delete | Cmd+Shift+Delete, and select unwrap if. The method should now look
as it did before you modified it.

Another great application of Surround With is iterating over collections. In the previous
section, you auto-generated a toString() method. Now change this method so that you
iterate over the mGreetings collection. Remove the return statement from the toString()
method so that the body of the toString() method is empty. Now type mGreetings and
then press Ctrl+Alt+T | Cmd+Alt+T. Select Iterate Iterable from the list, or press the | key.
Press Enter again to accept greeting as the name of the individual element. The resulting
code is a for-each loop. Notice that Android Studio understood that mGreetings contains
Strings, and that it also generated a local variable called greeting with the singular form of
mGreetings less the m. Modify the add() method further, per Figure 3-24.

39 EOverride

408 O public String toString() {

41

42 StringBuilder stringBuilder = new StringBuilder():
43 for (String greeting : mGreetings) {

44 stringBuilder.append(greeting + " "):

45 }

46 return stringBuilder.toeString().trim();

47 @ }

Figure 3-24. Using Surround With to iterate an iterable

CHAPTER 3: Programming in Android Studio 67

Summary

This chapter covered the most important code-generation features of Android Studio. We
encourage you to return to File » Settings » Code Style » Java and File » Settings »
Code Style » and spend a few minutes exploring the various settings there. Android Studio
provides a lot of keyboard shortcuts for coding, but you don’t have to remember them all. If
you get overwhelmed, you can use this book as a reference, or navigate to the Code menu
and explore its menu items and submenus as a reference.

Chapter

Refactoring Code

The solutions you develop in Android Studio will not always follow a straight path from
design to finish. To be an effective Android programmer, you need to be flexible and refactor
your code as you develop, debug, and test. In the preceding chapter, you learned how
Android Studio can generate code; in this chapter, you’re going to see how Android Studio
can refactor your code. The greatest risk with refactoring code is that you may introduce
unintended errors. Android Studio mitigates these risks by analyzing the consequences of
certain risky refactoring operations, and then activates the Find tool window, in which you
may preview your changes—flagged with any errors or conflicts —before committing them.

Many of the refactoring operations presented in this chapter can also be performed without
Android Studio’s refactoring tools. However, you should avoid refactoring by brute force

(for example, by resorting to a global find-and-replace option) because Android Studio
cannot always save you from introducing errors in those circumstances. In contrast, if
Android Studio detects that you’re attempting a refactoring operation, it will try to prevent
you from making any stupid mistakes. For example, dragging a Java source file from one
package to another in the Project tool window will force a Refactor » Move operation, which
analyzes the consequences of your move operation, allows you to preview the changes, and
then gracefully changes any import statements for that class throughout your entire project
to the new fully qualified package name.

Most refactoring operations are confined to one method or one class, and thus will not likely
introduce errors into your project. Risky refactoring operations are those that involve two

or more assets. If a refactoring operation introduces compilation errors, the Inspections
Manager will flag the affected assets with red tags in the Editor. At that point, you can either
attempt to fix them, or simply undo the entire refactoring operation by pressing Ctrl+Z |
Cmd+Z. If the refactor operation succeeded with no compilation errors, but nevertheless
involved a lot of assets, you should still run your tests to verify that you have not introduced
any runtime errors. Chapter 11 covers testing.

http://dx.doi.org/10.1007/9781430266013_11

70 CHAPTER 4: Refactoring Code

Tip You should commit any significant refactoring changes as a single Git commit so that you can
easily revert that commit later. Chapter 7 covers Git.

This chapter focuses on the refactoring operations with the greatest utility. Before we begin
addressing individual refactoring operations, we’d like to point out that Android Studio has
an extremely convenient refactoring operation called Refactor » Refactor This. Choosing
this option displays a context menu, shown in Figure 4-1, that aggregates the most useful
refactoring operations. The keyboard shortcut for this operation is Ctrl+Alt+Shift+T | Gtrl+T,
and on a PC you can remember it by its conveniently mnemonic acronym: CAST.

| Refactor This

Extract
3. Variable...
4. Constant...
5. Field...
. Parameter...
. Parameter Object...
. Method...
. Method Object...
. Delegate...

= o 100 I~ Iy |

Interface...

Superclass...
Find and Replace Code Duplicates...

Pull Members Up...
Push Members Down...
Use Interface Where Possible...

Replace Inheritance with Delegation...

| Replace Constructor with Factory Method...

| Generify...

Figure 4-1. The Refactor This menu with the most useful refactoring operations

Before you begin working on the examples in this chapter, modify the Sandbox. java file from
Chapter 3 so that it extends nothing and contains neither methods nor members, like the
following snippet:

public class Sandbox {

}

http://dx.doi.org/10.1007/9781430266013_7
http://dx.doi.org/10.1007/9781430266013_3

CHAPTER 4: Refactoring Code 7

Select Sandbox from the Project tool window and then navigate to Refactor » Rename

or press Shift+F6. The resulting dialog box allows you to rename your class and rename
any additional occurrences of that name in comments, test cases, and inherited classes.
Rename Sandbox to Playpen and click the Refactor button, shown in Figure 4-2. You
should see the results of the Renaming operation in your project. Now undo the Renaming
operation by pressing Ctrl+Z | Cmd+Z.

a"“: Rename E

Rename class com.apress.gerber.helloworld.Sandbox and its usages to:

] Playpen| J

(] Search in comments and strings [_] Search for text occurrences

[] Rename variables [V] Rename inheritors

E Rename tests

j Preview | ‘ Cancel | Help

Figure 4-2. Rename Sandbox to Playpen

Change Signature

The Change Signature operation enables you to change the following properties of a method:
visibility, name, return type, parameters, and exceptions thrown. Create a method in
Sandbox. java, as shown in this code snippet:

public String greetings(String message){
return "Hello " + message;
}

Place your cursor anywhere on the word greetings (highlighted in bold) and press Ctrl+F6 |
Cmd+F6, or navigate to Refactor » Change Signature. The resulting dialog box enables you
to modify the signature of the method, as shown in Figure 4-3.

72 CHAPTER 4: Refactoring Code

*. Change Signature

Visibility: Return type: Name:
i_public ﬂ 'String __éreetings

Parameters Exceptions |

Type: Name:

| String |greet | —

Method calls: (8) Modify () Delegate via overloading method

Signature Preview

public String greetings(String greet)

Refactor l Preview . ' Cancel

Figure 4-3. The Change Signature dialog box

In the Parameters tab, click the String message item. Change the name of the String
parameter from message to greet, as shown in Figure 4-3. The green-plus and red-minus icons
allow you to add parameters to or subtract parameters from your method, respectively; and
you may edit their types and names in the list. In addition to modifying the current method, you
may decide to select the Delegate via Overloading Method radio button. Selecting this radio
button will leave your original method unaffected, but generate another method with the new
signature you define. A set of methods may be considered overloaded in Java if they have

the same name, but the parameter order and/or parameter types are different. However, the
change we made does not qualify this method for overloading. You may preview your changes
before committing them by clicking the Preview button if you so choose. To complete the
operation and dismiss the dialog box, click the Refactor button.

Type Migration

As the name suggests, type migration allows you to migrate from one Java type to another.
Let’s assume that you create a Person class. Further along in your development, you discover
that Person is too generic, so you create a Manager class that extends Person. If you want to
migrate all instances of Person to Manager, you can do this easily with type migration.

CHAPTER 4: Refactoring Code 73

Place your cursor on the String declaration (highlighted in bold in the following code
snippet) of the greetings method and press Ctrl+Shift+F6 | Cmd+Shift+F6 or choose
Refactor » Type Migration. The resulting dialog box resembles that seen in Figure 4-4.

public String greetings(String greet){
return "Hello " + greet;
}

Migrate type of parameter greet of method greetings "String” to

| java.util.Date u

Choose scope where change signature may occur:

lOpen Files n‘_
| Preview || Cancel | | Help .

Figure 4-4. Type migration from string to date

Change java.lang.String to java.util.Date, as shown in Figure 4-4. Select Open Files from
the Choose Scope drop-down list. As with most refactor operations, you can preview your
changes by clicking the Preview button. Click the Refactor button.

Move

You can move a source file in one of three ways:

B By dragging the source file from one package to another in the Project
tool window

B By selecting that source file and navigating to Refactor » Move from the
main menu

B By selecting the file in the Project tool window and pressing F6

Right-click (Ctrl-click on Mac) the com.apress.gerber.helloworld package and choose
New » Package. Name the package refactor. From the Project tool window, drag and drop
the Sandbox class to the refactor package and press OK when prompted by the dialog
shown in Figure 4-5. Any drag-and-drop operation you perform in the Project tool window
automatically forces a Refactor » Move operation, which allows you to safely move your
class from one package to another.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

74 CHAPTER 4: Refactoring Code

Move class com.apress.gerber.helloworld.Sandbox

To directory: p\src\main\java\com\apress\gerber\helloworld\refactor

E Search in comments and strings @ Search for text occurrences

o

Figure 4-5. The Move dialog box, resulting from drag-and-drop

In addition to moving classes, you may also move members. In your Sandbox class, define a
new member like the following:

public static final String HELLO = "Hello Android Studio";

Place your cursor on this line of code and press F6. The resulting dialog box allows you to
move members from one class to another, as shown in Figure 4-6. Click the Cancel button
to cancel this operation.

Mowve members from:

| com.apress.gerber.helloworld.refactor.Sandbox

To (fully qualified name):
[com.apress.gerber.helloworld.MainActivity

E’I Move as enum constants if possible

Members to be moved (static only) Visibility

| Member
O Escalate

(o) Asis
O Private
(O Package local

M % HELLO:String

O Protected

(O Public

0 (oo] (oo] []

Figure 4-6. The Move Members dialog box

CHAPTER 4: Refactoring Code 75

Copy

Copy, which is similar to Move, is accessed by pressing the keyboard shortcut F5 or by
choosing Refactor » Copy from the main menu. In the Project tool window, select the Sandbox
class in the refactor package and press F5. Select the com.apress.gerber.helloworld package
from the Destination Package drop-down menu and click OK, as shown in Figure 4-7. Copying
Java source files indiscriminately as we did here is not a good idea because the resolution is
ambiguous and thus rife for potential errors.

Copy class com.apress.gerber.hell Jd.refactor.Sandk

MNew name: , Sandbox

Destination package: [com.apress.gerber,hdloworld n _|
Target destination directory: :_ 3 [app] - ..\app\srcumain\java\comiapress\gerber\helloworld n _|

[V Open copy in editor

K | e | | Hep |

Figure 4-7. The Copy Class dialog box

Safe Delete

Let’s delete the copied class we created. You can always delete files and resources in
Android Studio by selecting them in the Project tool window and pressing the Delete key.
Click the Sandbox file in the refactor package and press Delete. The resulting dialog box
allows you to use the Safe Delete option by selecting the Safe Delete check box. The
advantage of using Safe Delete is that we can search any dependencies on the asset that
might be broken before performing the delete, as shown in Figure 4-8. If any dependencies
of this asset are found in your project, you will be given the option to view them, or force the
delete operation anyway by clicking Delete Anyway.

Delete class "Sandbox™?

E Safe delete (with usage search)

[] Search in comments and strings [] Search for text occurrences

“ Cancel | | Help |

Figure 4-8. The Safe Delete dialog box

76 CHAPTER 4: Refactoring Code

Extract

Extract isn’t just one operation but several. This section covers some of the more important
extract operations: Extract Variable, Extract Constant, Extract Field, Extract Parameter,

and Extract Method. In the Sandbox class, let’s start with a clean slate by removing all the
members and methods:

public class Sandbox {
}

Extract Variable

In your Sandbox. java class, define a method, as shown here:

private String saySomething(){
return "Something";
}

Place your cursor anywhere on the hard-coded Something value (highlighted in bold) and
choose Refactor » Extract » Variable, or press Ctrl+Alt+V | Cmd+Alt+V and then press Enter
without selecting the Declare final checkbox. Android Studio extracts a local variable and
names it according to the hard-coded String. You should end up with something like this:

private String saySomething(){
String something = "Something";
return something;

}

Extract Constant

As you develop apps in Android, you will find yourself using a lot of Strings as keys—for
example, in Maps and Bundles. Therefore, extracting constants will save you a lot of time.

Define a method like the one seen in the following code snippet. Place your cursor anywhere
on the name_key string and press Ctrl+Alt+C | Cmd+Alt+C. The resulting dialog box should
look like Figure 4-9. Here, Android Studio provides a few suggestions for names. By
convention, constants in Java are all caps. Select NAME_KEY and press Enter.

Note You will need to import android.os.Bundle in order to create the proceding method
without compile-time errors.

private void addName(String name, Bundle bundle){
bundle.putString("name_key", name);
}

You should end up with a constant called NAME_KEY, which should be defined like this:

public static final String NAME_KEY = "name_key";

CHAPTER 4: Refactoring Code 77

20 T —— S —

59 public static final String NAME KEY = "name key";

€0 |

61 D Move to another class

62 5] private void addName, .tring name, Bundle bundle){
63 bundle.putString{ name) ;

64 Gl } HRME KEY

= . . | STRING

A g private Date geclime Press Ctri+ARr+C to show dialog with more options
68 mDate = new Date();

Figure 4-9. Extract Constant NAME_KEY

Extract Field

Extract Field converts a local variable to a field (a.k.a. member) of your class.

Note You will need to import java.util.Date in order to create the proceding method without
compile-time errors.

Define a method in your Sandbox class:

private Date getDate(){
return new Date();
}

Place your cursor anywhere on Date (highlighted in bold) and press Ctrl+Alt+F | Cmd-+Alt+F.
You will see a dialog box like the one shown in Figure 4-10. In Android, the naming
convention is to prefix fields (a.k.a. members) with an m. You will also notice a drop-down
menu that allows you to initialize your field in the current method, the field declaration, or the
constructor. Select Field Declaration and press Enter.

29

30 private Date mDate;

31

32 Initialize in:| field declarationﬂ
33 o private Da, ./ getDate(){
34 return

3 Q }

36:

Figure 4-10. The Extract Field dialog box

78 CHAPTER 4: Refactoring Code

You should end up with something like this:
private final Date mDate = new Date();

private Date getDate(){
return mDate;
}

Remove the final keyword so the declaration line looks like the following code snippet:

private Date mDate = new Date();

Extract Parameter

Extract Parameter allows you to extract a variable and place it as a parameter of the
enclosing method. Define a method in your Sandbox class:

private void setDate(){
mDate = new Date();

}

Place your cursor anywhere on Date() (highlighted in bold), press Ctrl+Alt+P | Cmd-+Alt+P,
and press Enter. The resulting method should look like the following code snippet:

private void setDate(Date date){
mDate = date;

}
Extract Method

Extract Method lets you select one or more lines of contiguous code and place them in

a separate method. There are two reasons you would want to do this. The first reason is
that you have a method that is too complex. Breaking an algorithm into discrete blocks of
approximately 10-20 lines each is much easier to read and far less error-prone than one
method with 100 lines of code.

It’s almost never a good idea to repeat a block of code, so if you find a block of code that is
repeated, it’s best to extract a method and call that method in place of the repeated blocks.
By extracting a method and calling it where you had previous used a repeated block of
code, you can maintain your method in one place, and if you need to modify it, you need
only modify it once. Re-create the following two methods in your Sandbox class, as shown in
Listing 4-1. Feel free to copy and paste.

CHAPTER 4: Refactoring Code

Listing 4-1. Exract Method Code

private String methodHello (){

}

String greet = "Hello";

StringBuilder stringBuilder = new StringBuilder();

for(int nC = 0; nC < 105 nC++){
stringBuilder.append(greet + nC);

}

return stringBuilder.toString();

private String methodGoodbye (){

}

String greet = "Goodbye";

StringBuilder stringBuilder = new StringBuilder();

for(int nC = 0; nC < 10; nC++){
stringBuilder.append(greet + nC);

}

return stringBuilder.toString();

79

As we’ve already mentioned, any time you find yourself repeating blocks of code or copying

and pasting a block of code, you should consider using Extract Method. Select all the lines

highlighted in bold in Listing 4-1. Now press Ctrl+Alt+M | Cmd+Alt+M to extract the method.

You will be presented with a dialog box showing the signature of the method. Rename this
method to getGreet, as shown in Figure 4-11, and click OK.

80 CHAPTER 4: Refactoring Code

Visibility: Name:
Iprivate nl ge‘tGreetl
[Declare static

| Parameters

|ZI String

Signature Preview

private String getGreet (String greet)

“ I Cancel ‘ | Help |

Figure 4-11. The Extract Method dialog box

Android Studio scans your file and sees that you have another instance of the exact block of
code. Click Yes to accept the suggestions in the Process Duplicates dialog box, as shown
in Figure 4-12.

Figure 4-12. The Process Duplicates dialog box

You should end up with something like Listing 4-2. The resulting method is far easier to
maintain now that it is kept in one place.

Listing 4-2. Code Resulting from Extract Method Operation
private String methodHello (){

String greet = "Hello";
return getGreet(greet);

CHAPTER 4: Refactoring Code 81

private String methodGoodbye (){

String greet = "Goodbye";
return getGreet(greet);

}

private String getGreet (String greet){

StringBuilder stringBuilder = new StringBuilder();

for(int nC = 0; nC < 10; nC++){
stringBuilder.append(greet + nC);

}

return stringBuilder.toString();

}

Advanced Refactoring

The refactoring operations presented throughout the remainder of this chapter are
advanced. If you're interested in simply getting up to speed with Android Studio, you already
have sufficient knowledge to use the refactoring operations effectively, and you may skip this
section. However, if you understand Java well and want to take a deep dive into some of the
more advanced refactoring operations, continue reading.

Start with a clean slate by removing all method and members from Sandbox. java:

public class Sandbox {

}

Right-click (Ctrl-click on Mac) the com.apress.gerber.helloworld package in the Project tool
window and choose New » Java Class. Name your class Minibox. Change the definition of
Minibox so that it inherits from Sandbox and has a member called mShovel, as shown here:

public class Minibox extends Sandbox {
private String mShovel;

Push Members Down and Pull Members Up

Pushing members down and pulling members up is used with inheritance. Notice that we have
defined the mShovel member in the Minibox class. Let’s assume we decide later that mShovel
may be useful for other classes that extend Sandbox. To do this, open the Minibox class and
choose Refactor » Pull Members Up. The resulting dialog box looks like Figure 4-13.

82 CHAPTER 4: Refactoring Code

Pull up members of com.apress.gerber.helloworld.Minibox to:

€5 com.apress.gerber.helloworld.Sandbox

Mempbers to be pulled up JavaDoc for abstracts

Member Make abstract
M @8 mShovelString

I Preview | | Cancel | i Help

Figure 4-13. The Pull Members Up dialog box

The mShovel member is selected by default and the Pull Up Members combo box is set to

the com.apress.gerber.helloworld.Sandbox class by default since Sandbox is the superclass
of Minibox. Click Refactor. If you now inspect Sandbox and Minibox, you will notice that the
mShovel member belongs to Sandbox and is no longer present in Minibox. As a general rule, if
you believe that a member may be useful to other extending classes, you should pull those
members up the hierarchy. To push members down the hierarchy, you can follow similar steps.

Replace Inheritance with Delegation

Right-click (Ctrl-click on Mac) the com.apress.gerber.helloword package and choose
New » Java Class. Name your class Patio and make it extend Sandbox:

public class Patio extends Sandbox {

}

Upon further analysis, we decide that Patio is not a Sandbox, but rather has a Sandbox. To
change this relationship, navigate to Refactor » Replace Inheritance with Delegation. In the
resulting dialog box, click the Generate Getter for Delegated Component check box, shown
in Figure 4-14.

CHAPTER 4: Refactoring Code 83

Replace with delegation inheritance from:

1 © & com.apress.gerber.helloworld.Sandbox

Field name:[m

Delegate members

Nothing to show

[V Generate getter for delegated component
2 (oo] [Goca | []

Figure 4-14. The Replace Inheritance with Delegation dialog box

Your Patio class should now have a Sandbox member, as shown in the following code snippet:
public class Patio {
private final Sandbox mSandbox = new Sandbox();

public Sandbox getSandbox() {
return mSandbox;
}

}

Encapsulate Fields

Encapsulation is an object-oriented strategy that hides class members by making their
access level private and then provides a public interface to those members via public getter/
setter methods. Refactor » Encapsulate Fields is similar to Code » Generate » Getter and
Setter, though you have a lot more options when you choose Refactor » Encapsulate Fields.
Open your Sandbox class and define a new member called mChildren, as highlighted in bold
in the next code snippet. From the main menu, choose Refactor » Encapsulate Fields.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

84 CHAPTER 4: Refactoring Code

public class Sandbox {
private String mShovel;
private int mChildren;

}

The resulting dialog box allows you to choose exactly how your fields will be encapsulated
and what access level they should have. A truly encapsulated field will have private visibility
with public accessor (getter) and mutator (setter) methods. Click the Refactor button, shown
in Figure 4-15, and notice that Android Studio has generated getters and setters for us in our
Sandbox. java class.

-J.L.-..—-L‘::* ».J-‘:?J .,-u..b'u-’ NADOX

Fields to Encapsulate

Field Setter

[0 mshovekstring geshove

[V] (' 8 mChildren:int getChildren setChildren

Encapsulate

[E Get access
IZ Set access

[V] Use accessors even when field is accessible

| Encapsulated Fields' Visibility Accessors’ Visibility
(®) Private (®) Public
(O Package local (O Protected
() Protected (O Package local

o Asis O Private

GGETLGI | Preview | | Cancel | l Help

Figure 4-15. The Encapsulate Fields dialog box

Wrap Method Return Value

Wrapping a return value may be useful when you need to return an object rather than a
primitive (though there are other scenarios where you might want to wrap a return value).
Place your cursor on the getChildren() method and navigate to Refactor » Wrap Method
Return Value. Select the Use Existing Class check box and type java.lang.Integer as the
Name and value as the Wrapper Field, as shown in Figure 4-16. Now click Refactor and
notice that your getChildren() method returns an Integer object rather than a primitive int.

CHAPTER 4: Refactoring Code 85

Method to wrap returns from:

| Sandbox.getChildren

O Create new class

Name |

Package name |

Target destination directory:

[[app] - . \app\src\main\java

(O Create inner class

Name |

() Use existing class

Name “ava.lang.lnteger

Wrapper field l?_'. 8 value

(e | (ot | [op

Figure 4-16. The Wrap Return Value dialog box

Replace Constructor with Factory Method

Place your cursor inside the enclosing brackets of the Sandbox class definition. Press
Alt+Insert | Cmd+N and select Constructor to generate a new constructor. Choose both
members, shown in Figure 4-17, and click OK.

v (€ com.apress.gerber.helloworld.Sandbox
O mShovel:String
© mChildreniint

“ l Selectﬂone] \ Cancel

Figure 4-17. The Choose Fields to Initialize by Constructor dialog box

86 CHAPTER 4: Refactoring Code

Place your cursor anywhere in the newly defined constructor, shown in the following code
snippet, and then navigate to Refactor » Replace Constructor with Factory Method. The
resulting dialog box looks like Figure 4-18. Click Refactor to generate a factory method.

public Sandbox(String shovel, int children) {
mShovel = shovel;
mChildren = children;

'Ejﬁ Replace Constructor With

Factory method name: [CreateSandhox

In (fully qualified name):

com.a press.gerber.h-eilowo rIdSandb ox

| Preview Cancel | ‘

Figure 4-18. The Replace Constructor with Factory Method dialog box

Notice that the constructor is now private and that a new static method returns an instance
of the Sandbox class, as shown in the following code snippet. This operation is particularly
useful if you are creating a singleton.

public static Sandbox createSandbox(String shovel, int children) {
return new Sandbox(shovel, children);
}

Convert Anonymous to Inner

In the constructor of your Sandbox class, add the following line:
new Thread(new Runnable()).start();

Place your cursor on Runnable() and press Alt+Enter to invoke the code-completion
operation. Then select Implement Methods. Select the run method and click OK. Your code
should look something like the following code snippet:

new Thread(new Runnable() {
@0verride
public void run() {
//do something

}
}).start();

CHAPTER 4: Refactoring Code 87

Place your cursor on Runnable() and navigate to Refactor » Convert Anonymous to Inner.
Android Studio suggests MyRunnable as a class name for you, as shown in Figure 4-19.
Deselect the Make Class Static check box and click OK. Notice that you now have a private
inner class called MyRunnable in Sandbox. java that implements the Runnable interface. This
example doesn’t do much; however, you may have opportunities to use this operation when
delegating the behaviors of Views.

f.‘“ﬁ Convert Anonymous to Inner

Class name: IMyRunnableI

[Make class static

Constructor Parameters

Type

B | concel | [Hep

Figure 4-19. The Convert Anonymous to Inner dialog box

Summary

This chapter discussed many of the refactoring operations available in Android Studio.
Refactoring code is a necessary part of any programming project, and the refactoring tools
in Android Studio are among the best. Android Studio mitigates the risk of performing
certain refactoring operations by analyzing the consequences and allowing you to preview
the results in the Find tool window prior to committing an operation. The most important
refactoring operations are available from the Refactor » Refactor This dialog box, which is
invoked by using the keyboard shortcut Ctrl+Alt+Shift+T | Ctri+T.

Chapter

Reminders Lab: Part 1

By now you are familiar with the basics of creating a new project, programming, and refactoring.
It is time to create an Android application, otherwise known as an app. This chapter introduces
the first of four lab projects. These labs are intended to familiarize you with using Android
Studio in the context of developing an app. In this project, you will develop an app to manage
a list of items you want to remember. The core functionality will allow you to create and delete
reminders and flag certain reminders as important. An important item will be emphasized by
an orange tab to the left of the reminder’s text. The app will incorporate an action bar menu,
context menus, a local database for persistence, and multiple selection on devices that
support multiple selection.

Figure 5-1 illustrates the completed app running on the emulator. This example introduces
you to Android fundamentals and you will also learn how to persist data by using the built-in
SQLite database. Don’t worry if some of the topics are unfamiliar; later chapters cover those
topics in greater detail.

Note We invite you to clone this project using Git in order to follow along, though you will be
recreating this project with its own Git repository from scratch. If you do not have Git installed on
your computer, see Chapter 7. Open a Git-bash session in Windows (or a terminal in Mac or Linux)
and navigate to C: \androidBook\reference\ (If you do not have a reference directory, create
one. On Mac navigate to /your-labs-parent-dir/reference/) and issue the following git command: git
clone https://bitbucket.org/csgerber/reminders.git Reminders.

http://dx.doi.org/10.1007/9781430266013_7
https://bitbucket.org/csgerber/reminders.git

90 CHAPTER 5: Reminders Lab: Part 1

5 5554News S - Eo._]

-nReminders

Buy Learn Android Studio

Send Dad birthday gift

Dinner at the Gage on Friday

String squash racket

Shovel and salt walkways

Prepare Advanced Android syllabus
Buy new office chair

Call Auto-body shop for quote
Renew membership to club

Riv new Ralavw Andrnid nhane

Figure 5-1. The completed app interface

To operate the Reminders app, you can use the overflow menu of the Action Bar. Tapping
the overflow button, which looks like three vertical dots on the right side of the menu bar,
opens a menu with two options as shown in Figure 5-2: New Reminder, and Exit. Tapping
New Reminder opens a dialog box as shown in Figure 5-3. In the dialog box, you can add
text for your new reminder and then tap Commit to add it to the list. Tapping Exit simply
quits the app.

CHAPTER 5: Reminders Lab: Part 1

B 5554Newus 5

URemiﬂdef new Reminder

Buy Learn An

Send Dad birthday gift
Dinner at the Gage on Friday
String squash racket

Shovel and salt walkways

 a10:47

Prepare Advanced Android syllabus

Buy new office chair

Call Auto-body shop for quote

Renew membership to club

Riv new RGalavw Andrnid nhane

e T i I s |

Figure 5-2. App interface with overflow menu activated

91

92 CHAPTER 5: Reminders Lab: Part 1

» 5554News S =]

%l & 039

@8 Reminders \ :

Buy Learn Android Studio

Cand Nad hirthdawv Aift

New Reminder:

Important

Cancel Commit

Call Auto-body shop for quote
Renew membership to club

Biiv new Galavv Andraid nhane

o O =

Figure 5-3. New Reminder dialog box

Tapping any reminder in the list opens a context menu with two options, shown in Figure 5-4:
Edit Reminder and Delete Reminder. Tapping Edit Reminder from the context menu opens the
Edit Reminder pop-up dialog box shown in Figure 5-5, where you can change the text of the
reminder. Tapping Delete Reminder from the context menu deletes the reminder from the list.

CHAPTER 5: Reminders Lab: Part 1

Figure 5-4. Context menu

5] 5554Newus S =y
U a@oa

@8 Reminders :

Buy Learn Android Studio
Send Dad birthday gift

Dinner at the Gage on Friday

Edit Reminder

Delete Remirlder

Prepare Advanced Android syllabus
Buy new office chair

Call Auto-body shop for quote
Renew membership to club

Riv new RGalavw Andrnid nhane

o O =

93

94 CHAPTER 5: Reminders Lab: Part 1

51 5554Newus_S =]

@l Reminders

Buy Learn Andrc

Cand Nad hirthdAdayv A
Edit Reminder

Buy Learn Android Studio

L3

Important

Cancel Commit

Call Auto-body shop for quote
Renew membership to club

Riv new Ralavv Andraid nhnna

Figure 5-5. Edit Reminder dialog box

Starting a New Project

Start a new project in Android Studio by using the New Project Wizard as explained in
Chapter 1. Enter Reminders as the application name, set the company domain to
gerber.apress.com, and choose the Blank Activity template. Save this project under
the path C:\androidBook\Reminders. It’s a good idea to keep all of your lab projects

in a common folder such as C:\androidBook (or use ~/androidBook for Mac/Linux) for
consistency with our examples. On the next page of the wizard, select Phone and Tablet
and set the Minimum SDK to API 8: Android 2.2 (Froyo). By setting your min API level
to 8, you are making your app available to more than 99% of the Android market. Click
the Next button, choose the Blank Activity from the available templates, and click Next
again. Set the activity name to RemindersActivity and then click Finish, as shown in
Figure 5-6.

http://dx.doi.org/10.1007/9781430266013_1
http://gerber.apress.com/

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 5: Reminders Lab: Part 1

Blank Activity

Figure 5-6. Entering an activity name

Creates a new blank activity with an action bar.

Activity Name: [RemindersAct‘rviin
Layout Name: l activity_reminders
Title: | RemindersActivity

Menu Resource Name: l menu_reminders

Android Studio displays activity reminders.xml in Design mode. The activity reminders.xml
file is the layout for your main activity, as shown in Figure 5-7. As discussed in Chapter 1, the

project should run on either an emulator or a device at this point. Feel free to connect your

device or launch your emulator and the run the project to try it out.

e Edt Yeew Hevigste Code Anabge Befacior Budd Run

Teoks VCS Window Hedp

DHD ¢4 X000 AR &% 4[Ew- b kKA ¥8 LS 7 an
| i Reminsters | Caapp | Dl e) £ main) Ciren) B3 bayout) 5 acaiviey_ am
Sk B | B acty serminders i % | m
M n‘g Patette B [Ewows- - Gapomeme Thomnges- @ - Companent Trex. IE|e- 1!
* Ojm e 280 B @apo g Eorcsom .
e— [il Ryt
v Cams it N E Pelatel iyt :
é * [dewesble = Ly (B TetView - Gatrng hele_meeid
L - — @
o 5 oty semindersaml i
* Elmerw
» Elvalon
(2 Gracly Seripts

W 3 Favorttan

Buid Variants

[T

[Gradie busbd frsheed 1 13 sex (10 masesties ag0)

W Sucieg W Gt Consele M Mhomaryisalter |
wa | |w B

Figure 5-7. Design mode for activity_reminders

http://dx.doi.org/10.1007/9781430266013_1

96 CHAPTER 5: Reminders Lab: Part 1

Initializing the Git Repository

Your first step after creating a new project should be to manage the source code with version
control. All the labs is this book use Git, a popular version-control system that works seamlessly
with Android Studio and is available online for free. Chapter 7 explores Git and version control
more thoroughly.

If you do not already have Git installed on your computer, please refer to the section

entitled Installing Git in Chapter 7. Choose VCS » Import into Version Control » Create Git
Repository from the main menu. (In the Apple OS, choose VCS » VCS Operations » Create
Git Repository.) Figures 5-8 and 5-9 demonstrate this flow.

out|etivity_remindersxml - Android Studio 1.0.1
:—m Window Help
Local History »
Enable Version Control Integration...

VCS Operations Popup... Alt+Back Quote
Apply Patch...

Checkout from Version Control »

Import into Version Control Import into CVS... -
Browse VCS Repository { Create Git Repository...

® Share Project on GitHub
Create Mercurial Repository
Import into Subversion...

Share Project (Subversion)...

Figure 5-8. Creating the Git repository

* selectarecion forgitint "
Select directory where the new Git repository will be created.
@a® s X gj 81 Hide path
[C\andreidBeok\Reminders |ﬁ
> [.gradle
> [1.idea
v Dlapp
» [build
> Clibs
v Blsrc
» [androidTest
v [main
> Ojava
v Clres
» [drawable

» [drawable-hdpi
» [drawable-mdpi
» [drawable-xhdpi

» [drawable-xchdpi
-

“ | Cancel | Help

Figure 5-9. Selecting the root directory for the Git repository

http://dx.doi.org/10.1007/9781430266013_7
http://dx.doi.org/10.1007/9781430266013_7

CHAPTER 5: Reminders Lab: Part 1 97

When prompted to select the directory for Git init, make sure that the Git project will be
initialized in the root project directory (again, called Reminders in this example). Click OK.

You will notice that most of the files located in the Project tool window have turned brown, which
means that they are being tracked by Git but have not yet been added to the Git repository nor
are they scheduled to be added. Once your project is under Git’s control, Android Studio uses

a coloring scheme to indicate the status of files as they are created, modified, or deleted. This
coloring scheme will be explained in more detail as we progress though you can research this
topic in more detail here: jetbrains.com/idea/help/file-status-highlights.html.

Click the Changes tool button located along the bottom margin to toggle open the Changes
tool window and expand the leaf labeled Unversioned Files. This will show all files that are being
tracked. To add them, select the Unversioned Files leaf and press Ctrl+Alt+A | Cmd+Alt+A or
right-click the Unversioned Files leaf and choose Git » Add. The brown files should have turned
green, which means that they have been staged in Git and are now ready to be committed.

Press Ctrl+K | Cmd+K to invoke the Commit Changes dialog box. Committing files is the
process of recording project changes to the Git version control system. As shown in Figure 5-10,
the Author drop-down menu is used to override the current default committer. You should leave
the Author field blank, and Android Studio will simply use the defaults you initially set during your
Git installation. Deselect all check-box options in the Before Commit section. Put the following
message in the Commit Message field: Initial commit using new project wizard. Click the
Commit button and select Commit again from the drop-down items.

e OB I = Change list: | Default Git

= = ;
@ 1i] ApplicationTest.java Author: LE
W] B3 main (12 files
[[java\comi\apress\gerber\reminders (1 i’ L) Amend commit
() [1] RemindersActivity.java
E [res (10 file Before Commit
[[layout (1 fite] Reformat code
@ BN activity_reminders.xml O Rearrange code
[3 menu (1 f

e :
Syl 00 Qptimizemports
|_| Perform code analysis
|:] Check TODO (Show All) Configure
Commit Message [] Update copyright

Initial cormmit using new project wizard

New: 35

¥ Details

Figure 5-10. Committing changes to Git

http://jetbrains.com/idea/help/file-status-highlights.html.

98 CHAPTER 5: Reminders Lab: Part 1

By default, the Project tool window should be open. The Project tool window organizes your
project in different ways, depending on which view is selected in the mode drop-down
menu at the top of the window. By default, the drop-down menu is set to Android view,
which organizes the files according to their purpose and has nothing to do with the way the
files are organized on your computer’s operating system. As you explore the Projects tool
window, you will notice three folders under the app folder: manifests, java, and res. The
manifests folder is where your Android manifest files can be found. The java folder is where
your Java source files may be found. The res folder holds all of your Android resource files.
The resources located under the res directory may be XML files, images, sounds, and other
assets that help define the appearance and Ul experience of your app. Once you’ve had the
opportunity to explore Android view, we recommend switching to Project view which is more
intuitive because it maps directly to the file structure on your computer.

Note If you have worked with other IDEs or older beta versions of Android Studio, you will notice
the introduction of the Android and Package views in the Project tool window since the release of
Android Studio.

Building the User Interface

By default, Android Studio opens the XML layout file associated with the main activity in

a new tab of the Editor and sets its mode to Design, so the Visual Designer is typically the
first thing you see in your new project. The Visual Designer lets you edit the visual layout

of your app. In the middle of the screen is the Preview Pane. The Preview Pane displays a
visual representation of an Android device while rendering the results of the layout you are
currently editing. This representation can be controlled by using the preview layout controls
across the top of the screen. These controls adjust the preview and can be used to select
different (or multiple) flavors of Android devices, from smartphones to tablets or wearables.
You can also change the theme associated with your layout description. On the left side of
the screen, you'll find the Control palette. It contains various controls and widgets that can
be dragged and placed onto the stage, which is a visual representation of the device. The
right side of the IDE contains a component tree that shows the hierarchy of components
described in your layout. The layout uses XML. As you make changes in the Visual Designer,
these changes are updated in XML. You can click the Design and Text tabs to toggle
between visual- and text-editing modes. Figure 5-11 identifies several key areas of the
Visual Designer.

CHAPTER 5: Reminders Lab: Part 1 99

- indier] - lapl - Lxtiviy.rem - w0 —— - = e |)
File [dt Yiew Havigate Code Anshge Eefactor Build Ryn Jook VO3 Window Help —
DHO ¢4 X000 QAR ¢ HEw P KR FTTAES @ LS ? Q
-]) Ciapp) Clone) main) Caves) B layout) & activiey.)

%am .

£ | puette B e Enewsds O Groomene Themingess @+ e e Companent Tree EE| &

& B Layouts B850 B 2cap o oY Bbuason

ToT
!
i
a [Mrnes
*| [SS] Tot | v esign 1abs : : |
P arun 1000 & gandrod B Termingt W version Contral B 3 Cnanger B 3 Messages ' pventlog [Gradle Console M Memory Manitor
(5] Gradle busld finished in 40 sec (38 minutes age) na | s Gtmaste @

Figure 5-11. The Visual Designer layout

Working with the Visual Designer

Let’s start by creating a list of reminders. Click the Hello World TextView control on the stage
and then press Delete to remove it. Find the ListView control in the palette and drag it onto
the stage. As you drag, the IDE will display various measurement and alignment guidelines to
help you position the control which will tend to snap to the edges as you drag close to them.
Drop the ListView so that it aligns with the top of the screen. You can position it either at the
top-left or the top-center. After it is positioned, find the Properties view on the lower-right side
of the Editor. Set the id property to reminders list view. The id property is a name you can
give to controls that allows you to reference them programmatically in Java code; and this
is how we will refer to the ListView later when we modify the Java source code. Change the
layout:width property in the Properties window and set it to match_parent. This will expand
the control so that it occupies as much space as the parent control it lives within. You will
learn more about the details of designing layouts in Chapter 8. For now, your layout should
resemble Figure 5-12.

http://dx.doi.org/10.1007/9781430266013_8

100 CHAPTER 5: Reminders Lab: Part 1

Wi T e T s i = b0
ODHO #4 400 AR ¢ HHEw- b ERL FTAFS $8 $LES ? Q
&) Ciapp) D src) £ main) Cires) B3 ayout) B actvity remindessamd | -
g B activity_reminderc.omi x | g
Em B [Le Bwesde - @tppene TRemindens @ fon- Compenert Tree IZie g
53 Layouts B- alaa v [Device Screen
) Dl framataeut =il Stisanats + (iRdatetayont it
M!W‘ E tView o
]
Freperties TH57T
Layout-heaght match_parent
whyle
sccemmbiyliveRegion
algha
background
backgroundTint
backgroundTintMode
chickable m]
contentlescription
dhevaton
focusable m]
fecusableinTouchMede [
» gravity [i

B1000 & gandroid [Terminal & 3 Changes ™ pventlog [Gradie Console 8 Memory Mamitor
3 nis Gtmaster @

Figure 5-12. The activity_reminders layout with a ListView

In Android, an activity defines the logic that controls user interaction with your app. When
learning Android for the first time, it helps to think of an activity as a screen within your app,
though activities can be more complicated than that. These activities typically inflate a layout
which define where things appear on-screen. The layout files are defined as XML but can be
edited visually using the Visual Designer as described earlier.

Editing the Layout’s Raw XML

Click the Text tab along the bottom to switch from visual editing to text editing. This brings up
a view of the raw XML for the layout, along with a live preview to the right. Changes you make
to the XML are immediately reflected in the preview pane. Change the background color of
the RelativeLayout to a dark grey by inserting android:background="#181818" underneath

the line which reads android:layout_height="match_parent". Colors are expressed in
hexadecimal values. See Chapter 9 for more information on hexadecimal color values. Notice
that there is now a dark-grey swatch that appears in gutter next to the line you inserted which
set the background color of the root ViewGroup. If you toggle back to Design mode, you will
observe that the entire layout is now dark-grey.

Hard-coding a color value directly in your XML layout file is not the best approach. A better
option is to define a colors.xml file under the values resource folder and define your colors
there. The reason we externalize values to XML files such as colors.xml is that these
resources are kept and edited in one place and they can be referenced easily throughout
your project.

http://dx.doi.org/10.1007/9781430266013_9

CHAPTER 5: Reminders Lab: Part 1 101

Select the hex value #181818 and cut it to your clipboard by using Ctrl+X | Cmd+X or by
choosing Edit » Cut. Type @color/dark_grey in its place. This value uses special syntax to
refer to an Android color value named dark_grey. This value should be defined in an Android
resource file called colors.xml, but because this file does not yet exist in your project, Android
Studio highlights this error in red. Press Alt+Enter and you will be prompted with options to
correct the error. Select the second option, Create Color Value Resource dark_grey, and then
paste the value in the Resource value: field of the next dialog box that appears and click Ok.

The New Color Value Resource dialog box will create the Android resource file colors.xml and

fill it with the hexadecimal value. Click OK and then click OK in the Add Files to Git dialog box to
have this new file added to version control and be sure to select the Remember, Don’t Ask Again
checkbox so that you’re not bothered with this message again. Figure 5-13 demonstrates this flow.

Reminders - [C\androidBook\Reminders] - [app] - ..\app\src\mai yout\activity_reminders.xml - Android Studio 1.0.1
File Edit View MNavigate Code Analyze Refactor Build Run Jools VCS Window Help
DEHD ¢4 %00 QR (¢ HFm)P kA TFaCS @ SLAG ?

[Reminders » Caapp | [0 st » [0 main I:ans Elm,gmmymndmml
@ activity_reminders.xml x |

] ;; Project |

(] @<Rﬁlat1vel.ayout xmins:android="http://schemas.android.com/apk/res/android" A
i xmlns:tools="http://schemas.android.com/tools" android:layout width="match parent"
android:layout height="match parent" android:paddingleft="16dp"

E android:paddingRight="16dp"
2 @ android:paddingTop="16dp"
™~ :
L4 E android:background="gfcolor/dark grey"
! ; text=".RemindersActivity"> |
| @ Create color resource file 'dark_greyxml' » o i ;
9 ¥ Create color value resource 'dark_grey’ >
5 Inject Language/Reference » pt”
= Override Resource in Other Configuration... » r:t
ewh

| android:layout_: alignParentTop="true"
g android:layout centerHorizontal="true" />
(</Relativelayout>

, _
e coor v

Resource value: [#181818|

Source set: l main

Eile name: lcolors.xml
Create the resource in directories:

E values

[values-w820dp

Figure 5-13. Extracting the hard-coded color value as a resource value

102 CHAPTER 5: Reminders Lab: Part 1

The ListView in preview mode contains row layouts that do not provide enough contrast with
our chosen background color. To change the way these items appear, you will define a layout
for the row in separate layout file. Right-click the layout folder under the res folder and choose
New » Layout Resource File. Enter reminders_row in the New Resource File dialog box. Use
LinearLayout as the root ViewGroup and keep the rest of the defaults as seen in Figure 5-14.

a -— ———

&NCWRQSOUTCCF“Q D e e — W L

Filename: |

Root element: LinearLayout

Source set: main

Directory name: [layout

Available qualifiers: Chosen qualifiers:
@ Network Code

© Language

(@ Region

— Layout Direction

L4 Smallest Screen Width

& Screen Width

I Screen Height

1§

Figure 5-14. New Resource File dialog box

You will now create the layout for an individual list item row. The LinearLayout root ViewGroup

is the outermost element in the layout. Set its orientation to vertical by using the controls

in the toolbar at the top of the preview pane. Be careful when you use this control because
horizontal lines indicate a vertical orientation and vice versa. Figure 5-15 highlights the Change
Orientation button.

L+ [ENexusa~ [j- @AppTheme — - @- gi21~

g I E k&

Orientation

Figure 5-15. Change Orientation button

CHAPTER 5: Reminders Lab: Part 1 103

Find the properties view along the bottom right of the preview pane. Find the layout:height
property and set it to 50dp. This property controls the height of a control, and the dp

suffix refers to the density-independent pixels measurement. This is a metric that Android
uses to allow layouts to scale properly regardless of the screen density on which they are
rendered. You can click any property in this view and start typing to incrementally search for
properties, and then press the up- or down-arrows to continue searching.

Drag and drop a horizontal LinearLayout inside the vertical LinearLayout. Drag and drop a
CustomView control inside the horizontal LinearLayout and set its class property to android.
view.View to create a generic empty view and give it an id property of row_tab. As of this
writing, there is a limitation in Android Studio that does not allow you to drag a generic View
from the palette. Once you click CustomView, you will get a dialog box with different choices,
none of which include the generic View class. Select any class from the dialog and place it in
your layout. Find the class property of the view you just placed using the properties window
in the properties pane to the right and change it to android.view.View to work around this
limitation. Refer to Listing 5-1 to see how this is done.

You will use this generic View tab to flag certain reminders as important. With the edit
mode still set to Text, change your custom View’s layout:width property to 10dp and set
its layout:height property to match_parent. Using the match_parent value here will make
this View control as tall as its parent container. Switch to Design mode and drag and drop
a Large Text control inside the horizontal LinearLayout of the Component Tree and set

its width and height properties to match_parent. Verify that your Large Text component is
positioned to the right of the custom view control. In the Component Tree, the component
labelled textView should be nested inside the LinearLayout (horizontal) component and
underneath the view component. If textView appears above view, drag it down with your
mouse so that it snaps to the second (and last) position. Give your TextView control an id
value of row_text and set its textSize property to 18sp. The sp suffix refers to the scale-
independent pixels measurement which performs like dp, but also respects the user’s text
size settings so that, for example, if the user were hard of sight and wanted text on her
phone to display large, sp would respect this setting, whereas dp would not. Therefore, it’s
always a good idea to use sp for textSize. You will learn more about screen measurements
in Chapter 8.

Finally, set the TextView control’s text property to Reminder Text. Switch to Text mode and
make additional changes to the XML so that your code resembles Listing 5-1.

Listing 5-1. The reminders_row Layout XML Code

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="50dp"
android:orientation="vertical">

<Linearlayout
android:orientation="horizontal"
android:layout_width="match_parent
android:layout height="48dp">

http://dx.doi.org/10.1007/9781430266013_8

104 CHAPTER 5: Reminders Lab: Part 1

<view
android:layout width="10dp"
android:layout_height="match_parent"
class="android.view.View"
android:id="@+id/row_tab" />

<TextView
android:layout width="match_parent"
android:layout_height="50dp"
android:textAppearance="?
android:attr/textAppearancelarge”
android:text="Reminder Text"
android:id="@+id/row_text"
android:textSize="18sp" />
</Linearlayout>
</LinearLayout>

You will now create some custom colors. Switch to Design mode. Select the root
LinearLayout (vertical) in the Component Tree. Set its android:background attribute to
@color/dark_grey to reuse the color we defined earlier. Select the row_tab component in
the Component Tree and set its android:background attribute to @color/green. Select the
row_text component and set its android:textColor attribute to @color/white. As before,
these colors are not defined in the colors.xml file, and you will need to use the same process
as before to define them. Switch to Text mode. Press the F2 key repeatedly to jump back
and forth between these two additional errors and press Alt+Enter to bring up the IntelliSense
suggestion. Choose the second suggestion in both cases and fill in the pop-up dialog box with
the values #ffffff for fixing the white color and #003300 to fix the green color. After using the
suggestion dialog box to fix these errors, you can hold the Ctrl key and left-click any of these
colors which will bring you to the colors.xml file and should look like Listing 5-2.

Listing 5-2. The colors.xml File

<resources>
<color name="dark grey">#181818</color>
<color name="white">#ffffff</color>
<color name="green">#003300</color>
</resources>

Return to the activity reminders.xml layout file. You will now connect the new
reminders_row layout to the ListView in this layout. Switch to Text mode and add the
following attribute to the ListView element: tools:1istitem="@layout/reminders row"
as shown in Figure 5-16.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 5: Reminders Lab: Part 1 105

Adding this attribute doesn’t change the way the layout renders when it runs; it merely
changes what the preview pane uses for each item in the list view. To make use of the
new layout, you must inflate it using Java code and we will show you how do that in a
subsequent step.

1) Reminders - [CAandrok inders] - [spp] - _\app i ivity.remindersmi - Android Studio 10.1

File Edit Yiew Navigate Code Anshge Befactor Buld Run Jock VC§ Window Help

OO + X0Do ag ¢« Wwwer/]p A PP AETD &8 FL A& 7
[Reminders | (3 app ' [sre /[main | 5 res | 5 layout | B activity_reminders.aml

1S activity_remendersaml % Previews

S<Relativelayout mmins:androide*http://schemas.android.com/apk/res/android® B - FEeousi- O @rppheme " Reminders- | - -
xalng:tools="hitp: //schesa otd.com/tools” android:layout widthe“match parent”
parent” android:paddingleft="16dp

® 1 Project
"

android: layout_heigh
android: paddingRight
android:paddingTop="16d;
android:backgrounds-#color/dark_grey”

android tom="164p~ tools * . RemindersActivity™>

<1 I: Structure
-

fListView
android: layout_widthe"satch_parent
android:layout_height="wrap
android:ide"#+id/reminders_list view"
android: layout_alignParentTop="trus”
android: layout_centerBorizontale="true"
tools:listitem="#layout/reminders_row"
:]
J</Relativelayout>

Figure 5-16. The preview pane is now rendering a custom ListView layout

Adding Visual Enhancements

You have just completed a custom layout for your ListView rows, but you shouldn’t stop
there. Adding a few visual enhancements will make your app stand-out from the others. Take
a look at how the text renders on-screen. A careful eye will catch how it is slightly off-center
and runs up against the green tab on the left. Open the reminders_row layout to make some
minor adjustments. You want the text to gravitate toward the vertical center of the row and
give a bit of padding so as to provide some visual separation from the side edges. Replace
your TextView element with the code in Listing 5-3.

Listing 5-3. TextView Additional Attributes

<TextView
android:layout_width="match_parent"”
android:layout_height="50dp"
android:text="Reminder Text"
android:id="@+id/row_text"
android:textColor="@color/white"
android:textSize="18sp"
android:gravity="center_vertical"
android:padding="10dp"
android:ellipsize="end"
android:maxLines="1"
/>

106 CHAPTER 5: Reminders Lab: Part 1

The additional ellipsize attribute will truncate text that is too long to fit in the row with an
ellipsis on the end, whereas the maxLines attribute restricts the number of lines in each row
to 1. Finally, add two more generic view objects from Listing 5-4 after the inner LinearLayout
but before the closing tag of the outer LinearLayout to create a horizontal rule beneath the
row. The outer LinearlLayout is set to a height of 50dp, and the inner LinearLayout is set to

a height of 48dp. The two generic view objects will occupy the remaining vertical 2dp inside
the layout creating a beveled edge. This is shown in Listing 5-4.

Listing 5-4. Extra Generic Views for beveled edge

</Linearlayout>

<view
class="android.view.View"
android:layout_width="fill parent"
android:layout_height="1dp"
android:background="#000"/>

<view
class="android.view.View"
android:layout _width="fill parent"
android:layout_height="1dp"
android:background="#333"/>

</LinearlLayout>

Adding Items to ListView

You will now make changes to the activity that uses the layout you just modified. Open the
Project tool window and find the RemindersActivity file under your java source folder. It will
be located under the com.apress.gerber.reminders package. Find the onCreate() method
in this file. It should be the first method defined in your class. Declare a ListView member
called mListView and change the onCreate() method to look like the code in Listing 5-5. You
will need to resolve the imports ListView and ArrayAdapter.

CHAPTER 5: Reminders Lab: Part 1 107

Listing 5-5. Add List Items to the ListView

public class RemindersActivity extends ActionBarActivity {
private ListView mListView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity reminders);
mListView = (ListView) findViewById(R.id.reminders list view);
//The arrayAdatper is the controller in our
//model-view-controller relationship. (controller)
ArrayAdapter<String> arrayAdapter = new ArrayAdapter<String>(
//context
this,
//layout (view)
R.layout.reminders row,
//row (view)
R.id.row_text,
//data (model) with bogus data to test our listview
new String[]{"first record", "second record", "third record"});

mListView.setAdapter(arrayAdapter);
}

//Remainder of the class listing omitted for brevity

}

This code looks up the ListView by using the id property you defined earlier and removes
the the default list divider so that the custom beveled divider we created earlier will render
properly. The code also creates an adapter with a few example list items. Adapter is a
special Java class defined as part of the Android SDK that functions as the Controller in

the Model-View-Controller relationship among the SQLite database (Model), the ListView
(View), and the Adapter (Controller). The Adapter binds the Model to the View and handles
updates and refreshes. Adapter is the superclass of ArrayAdapter, which binds elements of
an Array to a View. In our case, this View is a ListView. ArrayAdapter takes three parameters
in its three-argument constructor. The first parameter is a Context object represented by
the current activity. The Adapter also needs to know which layout and which field, or fields,
in the layout should be used to display row data. To satisfy this requirement, you pass the
ids of both the layout and the TextView item in the layout. The last parameter is an array of
Strings used for each item in the list. If you run the project at this point, you will see the values
given in the ArrayAdapter constructor displayed in the list view as seen in Figure 5-17.

108 CHAPTER 5: Reminders Lab: Part 1

H2ANG

Reminders

first record

second record

third record

Figure 5-17. ListView example

Press Ctrl+K | Cmd+K to commit your changes to Git and use Adds ListView with custom
colors as the commit message. As you work through a project, it is good practice to
perform incremental commits to Git while using commit messages that describe the features
each commit adds/removes/changes. Keeping this habit makes it easy to identify individual
commits and later build release notes for future collaborators and users.

Setting the Action Bar Overflow Menu

Android uses a common visual element called Action Bar. The Action Bar is where many
apps locate navigation and other options that allow the user to perform important tasks.
When you run the app at this point, you may notice a menu icon that looks like three
vertical dots. These dots are known as the overflow menu. Clicking the overflow menu
icon produces a menu with a single menu item entry called settings. This menu item is
placed there as part of the new project wizard template and is essentially a placeholder
that performs no action. The RemindersActivity loads the menu_reminders.xml file, which
is found under the res/menu folder. Make changes to this file to add new menu items to the
activity as seen in Listing 5-6.

CHAPTER 5: Reminders Lab: Part 1 109

Listing 5-6. New Menu Items

<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
tools:context="com.apress.gerber.reminders.app.RemindersActivity" >
<item android:id="@+id/action_new"
android:title="new Reminder"
android:orderInCategory="100"
app:showAsAction="never" />
<item android:id="@+id/action_exit"
android:title="exit"
android:orderInCategory="200"
app:showAsAction="never" />
</menu>

In the preceding code listing, the title attribute corresponds to the text displayed in the
menu item. Since we’ve hard-coded these attributes, Android Studio will flag these values
as warnings. Press F2 to jump between these warnings and press Alt+Enter to pull up the
IntelliSense suggestions. You simply need to press Enter to accept the first suggestion, type
a name for the new String resource, and as soon as the dialog box pops-up, press Enter
again to accept the named resource. Use new_reminder for the name of the first item and
exit for the second.

Open RemindersActivity and replace the onOptionsItemSelected() method with the text in
Listing 5-7. You will need to resolve the import for the Log class. When you tap a menu item
in the app, the runtime invokes this method, passing in a reference to whichever MenuItem
was tapped. The switch statement takes the itemId of the MenuItem and either performs a
log statement or terminates the activity, depending on which item was tapped. This example
uses the Log.d() method that writes text to the Android debug logs. If your app contained
multiple activities and those activities were viewed prior to the current activity, then calling
finish() would simply pop the current activity off the backstack and control would pass to
the next underlying activity. Because the RemindersActivity is the only activity in this app,
the finish() method pops the one and only activity off the backstack and results in the
termination of your app.

Listing 5-7. onOptionsltemSelected() Method Definition

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_new:
//create new Reminder
Log.d(getLocalClassName(),"create new Reminder");
return true;

110 CHAPTER 5: Reminders Lab: Part 1

case R.id.action_exit:
finish();
return true;
default:
return false;

}

Run the app and test the new menu options. Tap the new Reminder menu option and watch
the Android log to see the message appear. The Android DDMS (Dalvik Debug Monitor
Service) window will open as you run your app on your emulator or device, and you will need
to select the Debug option under Log Level to see debug logs. Run your app and interact
with the menu items. Pay attention to the logs in the Android DDMS window as you tap the
New Reminder menu item. Finally, press Ctrl+K | Cmd+K and commit your code to Git using
Adds new reminder and exit menu options as your commit message.

Persisting Reminders

Because the Reminders app will need to maintain a list of reminders, you will need a
persistence strategy. The Android SDK and runtime provide an embedded database engine
called SQLite, which is designed to operate in constrained memory environments and is
well suited for mobile devices. This section covers the SQLite database and explores how
to maintain a list of reminders. Our strategy will include a data model, a database proxy
class, and a CursorAdapter. The model will hold the data that is read from and written to the
database. The proxy will be an adapter class that will translate simple calls from the app into
API calls to the SQLite database. Finally, the CursorAdapter will extend a standard Android
class that deals with data access in an abstract way.

Data Model

Let’s start by creating the data model. Right click the com.apress.gerber.reminders
package and select New » Java Class. Name your class Reminder and press Enter.
Decorate your class with the code in Listing 5-8. This class is a simple POJO (Plain Old
Java Object) that defines a few instance variables and corresponding getter and setter
methods. The Reminder class includes an integer ID, a String value, and a numeric
importance value. The ID is a unique number used to identify each reminder. The String
value holds the text for the reminder. The importance value is a numeric indicator that
flags an individual reminder as important (1 = important, 0 = not important). We used int
rather than boolean here because the SQLite database does not have a boolean datatype.

CHAPTER 5: Reminders Lab: Part 1

Listing 5-8. Reminder Class Definition
public class Reminder {
private int mId;

private String mContent;
private int mImportant;

public Reminder(int id, String content, int important) {
mId = id;
mImportant = important;
mContent = content;

public int getId() {
return mld;

public void setId(int id) {
mId = id;

public int getImportant() {
return mImportant;

public void setImportant(int important) {
mImportant = important;

public String getContent() {
return mContent;

public void setContent(String content) {
mContent = content;

}

Now you will create a proxy to the database. Again, this proxy will translate simple

application calls into lower-level SQLite API calls. Create a new class in your com.apress.

gerber.reminders package called RemindersDbAdapter. Place the code in Listing 5-9
directly inside of your newly created RemindersDbAdapter class. As you resolve imports,
you will notice that DatabaseHelper is not found in the Android SDK. We will define the

1

112 CHAPTER 5: Reminders Lab: Part 1

DatabaseHelper class in a subsequent step. This code defines the column names and
indices; a TAG for logging; two database API objects; some constants for the database
name, version, and the main table name; the context object; and a SQL statement used to
create the database.

Listing 5-9. Code to be placed inside the RemindersDbAdapter class

//these are the column names

public static final String COL_ID = "_id";

public static final String COL_CONTENT = "content";
public static final String COL_IMPORTANT = "important";

//these are the corresponding indices

public static final int INDEX_ID = 0;

public static final int INDEX CONTENT = INDEX ID + 1;
public static final int INDEX IMPORTANT = INDEX ID + 2;

//used for logging
private static final String TAG = "RemindersDbAdapter";

private DatabaseHelper mDbHelper;
private SQLiteDatabase mDb;

private static final String DATABASE_NAME = "dba_remdrs";
private static final String TABLE_NAME = "tbl remdrs";
private static final int DATABASE_VERSION = 1;

private final Context mCtx;

//SQL statement used to create the database
private static final String DATABASE_CREATE =
"CREATE TABLE if not exists " + TABLE_NAME + " (" +
COL_ID + " INTEGER PRIMARY KEY autoincrement, " +
COL_CONTENT + " TEXT, " +
COL_IMPORTANT + " INTEGER);";

SQLite API

DatabaseHelper is a SQLite API class used to open and close the database. It uses
Context, which is an abstract Android class that provides access to the Android operating
system. DatabaseHelper is a custom class, and must be defined by you. Use the code

in Listing 5-10 to implement DatabaseHelper as an inner class of RemindersDbAdapter.
Place this proceeding code towards the end of the RemindersDbAdatper but still inside
RemindersDbAdapters enclosing braces.

CHAPTER 5: Reminders Lab: Part 1 113

Listing 5-10. RemindersDbAdapter

private static class DatabaseHelper extends SQLiteOpenHelper {
DatabaseHelper(Context context) {
super(context, DATABASE NAME, null, DATABASE VERSION);

}

@0verride

public void onCreate(SQLiteDatabase db) {
Log.w(TAG, DATABASE CREATE);
db.execSQL(DATABASE CREATE);

@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS " + TABLE NAME);
onCreate(db);

}

DatabaseHelper extends SQLiteOpenHelper, which helps maintain the database with special
callback methods. Callback methods are methods that the runtime environment will call
throughout the life-cycle of the application, and they use the SQLiteDatabase db variable
supplied to execute SQL commands. The constructor is where the database is initialized.
The constructor passes the database name and version to its superclass; and then the
superclass does the hard work of setting up the database. The onCreate() method is called
automatically by the runtime when it needs to create the database. This operation runs
only once, when the app first launches and the database has not yet been created. The
onUpgrade() method is called whenever the database needs to be upgraded, for example

if the developer changes the schema. If you do change the database schema, be sure to
increment the DATABASE_VERSION by one, and onUpgrade() will manage the rest. If you forget
to increment the DATABASE_VERSION, your app will crash even in debug build mode. In the
preceding code, we run a SQL command to drop the one and only table in the database
before running the onCreate() method to re-create the table.

The code in Listing 5-11 demonstrates using DatabaseHelper to open and close the database.
The constructor saves an instance of Context, which is passed to DatabaseHelper. The open()
method initializes the helper and uses it to get an instance of the database, while the close()
method uses the helper to close the database. Add this code after all the member variable
definitions and before the DatabaseHelper inner class definition inside the RemindersDbAdapter
class. When you resolve imports, use the android.database.SQLException class.

114 CHAPTER 5: Reminders Lab: Part 1

Listing 5-11. Database Open and Close Methods

public RemindersDbAdapter(Context ctx) {
this.mCtx = ctx;

//open

public void open() throws SQLException {
mDbHelper = new DatabaseHelper(mCtx);
mDb = mDbHelper.getWritableDatabase();

//close
public void close() {
if (mDbHelper != null) {
mDbHelper.close();

}

Listing 5-12 contains all the logic that handles the creating, reading, updating, and deleting
of Reminder objects in the tbl remdrs table. These are usually referred to as CRUD operations;
CRUD stands for create, read, update, delete. Add the proceeding code after the close()
method inside the RemindersDbAdapter class.

Listing 5-12. Database CRUD Operations

//CREATE

//note that the id will be created for you automatically

public void createReminder(String name, boolean important) {
ContentValues values = new ContentValues();
values.put(COL_CONTENT, name);
values.put(COL_IMPORTANT, important ? 1 : 0);
mDb.insert(TABLE_NAME, null, values);

//overloaded to take a reminder

public long createReminder(Reminder reminder) {
ContentValues values = new ContentValues();
values.put(COL_CONTENT, reminder.getContent()); // Contact Name
values.put(COL_IMPORTANT, reminder.getImportant()); // Contact Phone Number

// Inserting Row
return mDb.insert(TABLE_NAME, null, values);

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 5: Reminders Lab: Part 1

//READ
public Reminder fetchReminderById(int id) {

Cursor cursor = mDb.query(TABLE_NAME, new String[]{COL_ID,

COL_CONTENT, COL_IMPORTANT}, COL_ID + "=2",
new String[]{String.valueOf(id)}, null, null, null, null
)5
if (cursor != null)
cursor.moveToFirst();

return new Reminder(
cursor.getInt(INDEX_ID),
cursor.getString (INDEX_CONTENT),
cursor.getInt (INDEX IMPORTANT)

);

public Cursor fetchAllReminders() {
Cursor mCursor = mDb.query(TABLE_NAME, new String[]{COL_ID,
COL_CONTENT, COL_IMPORTANT},
null, null, null, null, null

);

if (mCursor != null) {
mCursor.moveToFirst();

}

return mCursor;
}
//UPDATE

public void updateReminder(Reminder reminder) {
ContentValues values = new ContentValues();
values.put(COL_CONTENT, reminder.getContent());
values.put(COL_IMPORTANT, reminder.getImportant());
mDb.update(TABLE_NAME, values,

COL_ID + "=2", new String[]{String.valueOf(reminder.getId())});

//DELETE
public void deleteReminderById(int nId) {

mDb.delete(TABLE_NAME, COL_ID + "=?", new String[]{String.valueOf(nId)});

public void deleteAllReminders() {
mDb.delete(TABLE_NAME, null, null);

115

116 CHAPTER 5: Reminders Lab: Part 1

Each of these methods uses the SQLiteDatabase mDb variable to generate and execute SQL
statements. If you are familiar with SQL, you may guess that these SQL statements will be in
the form of an INSERT, SELECT, UPDATE, or DELETE.

The two create methods use a special ContentValues object, which is a data shuttle used
to pass data values to the database object’s insert method. The database will eventually
convert these objects into SQL insert statements and execute them. There are two read
methods, one for fetching a single reminder and another for fetching a cursor to iterate all
reminders. You will use Cursor later in a special Adapter class.

The update method is similar to the second create method. However, this method calls
an update method on the lower-level database object, which will generate and execute an
update SQL statement rather than an insert.

Last, there are two delete methods. The first takes an id parameter and uses the database
object to generate and execute a delete statement for a particular reminder. The second
method requests that the database generate and execute a delete statement to remove all
the reminders from the table.

At this point, you need a means of getting reminders out of the database and into the
ListView. Listing 5-13 demonstrates the logic necessary to bind database values to
individual row objects by extending the special Adapter Android class you saw earlier.
Create a new class called RemindersSimpleCursorAdapter in the com.apress.gerber.
reminders package and decorate it with the proceeding code. As you resolve imports, use
the android.support.v4.widget.SimpleCursorAdapter class.

Listing 5-13. RemindersSimpleCursorAdapter Code

public class RemindersSimpleCursorAdapter extends SimpleCursorAdapter {

public RemindersSimpleCursorAdapter(Context context, int layout, Cursor c, String[]
from, int[] to, int flags) {
super(context, layout, c, from, to, flags);

}

//to use a viewholder, you must override the following two methods and define a ViewHolder class
@0verride
public View newView(Context context, Cursor cursor, ViewGroup parent) {

return super.newView(context, cursor, parent);

}

@0verride
public void bindView(View view, Context context, Cursor cursor) {
super.bindView(view, context, cursor);

ViewHolder holder = (ViewHolder) view.getTag();
if (holder == null) {
holder = new ViewHolder();
holder.colImp = cursor.getColumnIndexOrThrow(RemindersDbAdapter.COL_IMPORTANT);
holder.listTab = view.findViewById(R.id.row tab);
view.setTag(holder);

CHAPTER 5: Reminders Lab: Part 1 117

if (cursor.getInt(holder.colImp) > 0) {
holder.listTab.setBackgroundColor (context.getResources().getColor(R.color.orange));
} else {
holder.listTab.setBackgroundColor(context.getResources().getColor(R.color.green));

static class ViewHolder {
//store the column index
int colImp;
//store the view
View listTab;

}

We register the Adapter with the ListView to populate reminders. During runtime, the
ListView will repeatedly invoke the bindView() method on the Adapter with individual
onscreen View objects as the user loads and scrolls through the list. It is the job of the
Adapter to fill these views with list items. In this code example, we’re using a subclass of
Adapter called SimpleCursorAdapter. This class uses a Cursor object, which keeps track of
the rows in the table.

Here you see an example of the ViewHolder pattern. This is a well-known Android pattern
in which a small ViewHolder object is attached as a tag on each view. This object adds
decoration for View objects in the list by using values from the data source, which in this
example is the Cursor. The ViewHolder is defined as a static inner class with two instance
variables, one for the index of the Important table column and one for the row_tab view you
defined in the layout.

The bindView() method starts by calling the superclass method that maps values from the
cursor to elements in the View. It then checks to see whether a holder has been attached to
the tag and creates a new holder if necessary. The bindView() method then configures the
holder’s instance variables by using both the Important column index and the row_tab you
defined earlier. After the holder is either found or configured, it uses the value of the COL_
IMPORTANT constant from the current reminder to decide which color to use for the row_tab.
The example uses a new orange color, which you need to add to your colors.xml: <color
name="orange">#ffff381a</color>.

Earlier you used an ArrayAdapter to manage the relationship between model and view.
The SimpleCursorAdapter follows the same pattern, though its model is an SQLite
database. Make the changes in Listing 5-14 to use your new RemindersDbAdapter and
RemindersSimpleCursorAdapter.

118 CHAPTER 5: Reminders Lab: Part 1

Listing 5-14. RemindersActivity Code

public class RemindersActivity extends ActionBarActivity {

private ListView mListView;
private RemindersDbAdapter mDbAdapter;
private RemindersSimpleCursorAdapter mCursorAdapter;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity reminders);
mListView = (ListView) findViewById(R.id.reminders list view);
mListView.setDivider(null);
mDbAdapter = new RemindersDbAdapter(this);
mDbAdapter.open();

Cursor cursor = mDbAdapter.fetchAllReminders();

//from columns defined in the db
String[] from = new String[]{
RemindersDbAdapter.COL_CONTENT

};

//to the ids of views in the layout
int[] to = new int[]{
R.id.row_text

};

mCursorAdapter = new RemindersSimpleCursorAdapter(
//context
RemindersActivity.this,
//the layout of the row
R.layout.reminders row,
//cursor
cursor,
//from columns defined in the db
from,
//to the ids of views in the layout
to,
//flag - not used
0);

//the cursorAdapter (controller) is now updating the listView (view)
//with data from the db (model)
mListView.setAdapter(mCursorAdapter);

}
//Abbreviated for brevity

}

CHAPTER 5: Reminders Lab: Part 1 119

If you run the app at this point, you will not see anything in the list; the screen will be
completely empty because your last change inserted the SQLite functionality in place of the
example data. Press Ctrl+K | Cmd+K and commit your changes with the message

Adds SQLite database persistence for reminders and a new color for important reminders.
As a challenge, you might try to figure out how to add the example items back by using the
new RemindersDbAdapter. This is covered in the next chapter, so you can look ahead and
check your work.

Summary

At this point, you have a maturing Android app. In this chapter, you learned how to set-up
your first Android project and controlled its source using Git. You also explored how to edit
Android layouts in both Design and Text mode. You have seen a demonstration of creating
an overflow menu in the Action Bar. The chapter concluded by exploring ListViews and
Adapters, and binding data to the built-in SQLite database. In the following chapter, you will
complete the app by adding the ability to create and edit reminders.

Chapter

Reminders Lab: Part 2

This chapter covers capturing user input through the use of custom dialog boxes. We also
continue to demonstrate the use of adapters and an SQLite database. In this chapter, we
complete the lab we began in Chapter 5.

Adding/Removing Reminders

The example in Chapter 5 left the screen empty without any reminders. To see what the app
layout would look like with a list of reminders, it’s useful to add some example reminders
when the app launches. If you tried to come up with a solution to the challenge from the
preceding chapter, compare your code with the changes in Listing 6-1. The code in Listing
6-1 checks whether there is any saved state for the instance, and if there isn’t, it proceeds
to set up the example data. To do so, the code invokes some methods on DatabaseAdapter;
one to clear out all reminders, and another to insert some reminders.

Listing 6-1. Add Some Example Reminders

public class RemindersActivity extends ActionBarActivity {

private ListView mListView;
private RemindersDbAdapter mDbAdapter;
private RemindersSimpleCursorAdapter mCursorAdapter;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity reminders);
mListView = (ListView) findViewById(R.id.reminders list view);
mListView.setDivider(null);
mDbAdapter = new RemindersDbAdapter(this);
mDbAdapter.open();
if (savedInstanceState == null) {
//Clear all data

121

http://dx.doi.org/10.1007/9781430266013_5
http://dx.doi.org/10.1007/9781430266013_5

122 CHAPTER 6: Reminders Lab: Part 2

mDbAdapter.deleteAllReminders();
//Add some data
mDbAdapter.createReminder("Buy Learn Android Studio", true);
mDbAdapter.createReminder("Send Dad birthday gift", false);
mDbAdapter.createReminder("Dinner at the Gage on Friday", false);
mDbAdapter.createReminder("String squash racket", false);
mDbAdapter.createReminder("Shovel and salt walkways", false);
mDbAdapter.createReminder("Prepare Advanced Android syllabus", true);
mDbAdapter.createReminder("Buy new office chair", false);
mDbAdapter.createReminder("Call Auto-body shop for quote", false);
mDbAdapter.createReminder ("Renew membership to club", false);
mDbAdapter.createReminder("Buy new Galaxy Android phone", true);
mDbAdapter.createReminder("Sell old Android phone - auction", false);
mDbAdapter.createReminder("Buy new paddles for kayaks", false);
mDbAdapter.createReminder("Call accountant about tax returns", false);
mDbAdapter.createReminder("Buy 300,000 shares of Google", false);
mDbAdapter.createReminder("Call the Dalai Lama back", true);

}

//Removed remaining method code for brevity...

}

//Removed remaining method code for brevity...
}

There are several calls to the createReminder() method, each taking a String value

with the reminder text and a boolean value flagging the reminder as important. We set

a few values to true to provide a good visual effect. Click and drag a selection around

all of the createReminder() calls and then press Ctrl+Alt+M | Cmd+Alt+M to bring up

the Extract Method dialog box, as shown in Figure 6-1. This is one of many refactoring
operations available both via the Refactor menu and via a shortcut key combination. Enter
insertSomeReminders as the name for the new method and press Enter. The code in
RemindersActivity will be replaced by a call to the new method you named in the Extract
Method dialog box, and the code will be moved into the body of this method.

CHAPTER 6: Reminders Lab: Part 2 123

@ Extract Method -
Visibility: Name:
| o K3) |
Parameters
Type Name | §

Signature Preview
private void insertSomeReminders()

[o« IR

Figure 6-1. Extract Method dialog box, create insertSomeReminders() method

Run the app to see how the interface looks and behaves with the example reminders. Your
app should look something like the screenshot in Figure 6-2. Some of the reminders should
be displayed with a green row tab, while the ones marked important will be displayed with
an orange tab. Commit your changes with the message Adds Example reminders.

o1 5554 Neus. S |

Reminders

Buy Learn Android Studio

Send Dad birthday gift

Dinner at the Gage on Friday

String squash racket

Shovel and salt walkways

Prepare Advanced Android syllabus
Buy new office chair

Call Auto-body shop for quote
Renew membership to club

Rinv new Ralavw Andraid nhane

Figure 6-2. Runtime with example reminders inserted

124 CHAPTER 6: Reminders Lab: Part 2

Responding to User Interaction

No app is of much use unless it responds to input. In this section, you will add logic to
respond to touch events and eventually allow the user to edit the individual reminders.
The main component in the app is ListView, a subclass of the Android View object. Up to
this point, you haven’t done much with View objects other than place them in layouts. The
android.view.View object is a superclass of all components that draw to the screen.

Add the code from Listing 6-2 to the bottom of the onCreate() method in RemindersActivity, just
before the closing curly brace, and then resolve imports. This is an anonymous inner class
implementation of OnItemClickListener that has a single method, onItemClicked(). This
object will be used by the runtime as you interact with the ListView component to which it is
attached. The onCreate() method of the anonymous inner class will be called whenever you
tap the ListView. The method we define uses Toast, a class in the Android SDK. The call to
Toast.makeText() causes a small pop-up to display on-screen with whatever text is passed to
the method. You can use Toast as a quick indicator that a method is being called properly, as
shown in Listing 6-2.

Note Toast messages may be hidden on certain devices. An alternate approach would be to
log a message by using the Android logger, which is covered in detail in Chapter 12.

Listing 6-2. Set an OnltemClickListener with a Toast

//when we click an individual item in the listview
mListView.setOnItemClickListener(new AdapterView.OnItemClickListener() {

@0verride
public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
Toast.makeText(RemindersActivity.this, "clicked " + position,
Toast.LENGTH_SHORT).show();

}
b

Clicking the first item in the list invokes the onItemClick() method with a position that has
the value 0 as elements in the list are indexed starting at zero. The logic then pops a toast
with the text clicked and the position, as shown in Figure 6-3.

Call Auto-body shop for quote

clicked 0
Renew memcuc. i .o Club

Riiv new Ralavyv Andrnid nhnne

Figure 6-3. Toast message after tapping the first reminder

http://dx.doi.org/10.1007/9781430266013_12

CHAPTER 6: Reminders Lab: Part 2 125

User Dialog Boxes

With some familiarity of touch events, you can now enhance the click listener to show a
dialog box. Replace the entire onItemClick() method with the code in Listing 6-3. When you
resolve imports, please use the android.support.v7.app.AlertDialog class.

Listing 6-3. onltemClick() Modifications to Allow Edit/Delete

public void onItemClick(AdapterView<?> parent, View view, final int masterlListPosition, long id) {
AlertDialog.Builder builder = new AlertDialog.Builder(RemindersActivity.this);
ListView modelListView = new ListView(RemindersActivity.this);
String[] modes = new String[] { "Edit Reminder", "Delete Reminder" };
ArrayAdapter<String> modeAdapter = new ArrayAdapter<>(RemindersActivity.this,
android.R.layout.simple list item 1, android.R.id.text1, modes);
modeListView.setAdapter(modeAdapter);
builder.setView(modeListView);
final Dialog dialog = builder.create();
dialog.show();
modeListView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
@0verride
public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
//edit reminder
if (position == 0) {
Toast.makeText(RemindersActivity.this, "edit "
+ masterListPosition, Toast.LENGTH_SHORT).show();
//delete reminder
} else {
Toast.makeText(RemindersActivity.this, "delete "
+ masterListPosition, Toast.LENGTH_SHORT).show();
}
dialog.dismiss();
}
D;
}

In the preceding code you see another Android class at work, AlertDialog.Builder. The
class Builder is a nested static class inside the AlertDialog class, and it is used to build
AlertDialog.

The code in this lab so far creates a ListView and an ArrayAdapter to feed items to a
ListView. You may recall this pattern from Chapter 5. The adapter is created with an array
of two potential choices, Edit Reminder and Delete Reminder, before being passed to
ListView, which is, in turn, passed to AlertDialog.Builder. The builder is then used to
create and show a dialog box with the list of choices.

http://dx.doi.org/10.1007/9781430266013_5

This book was purchased by tanakasy@fukuoka-edu.ac.jp

126 CHAPTER 6: Reminders Lab: Part 2

Pay careful attention to the last section of code in the Listing 6-3. It is similar to the
OnItemClickListener() code added earlier; however, we are attaching a click listener to
the modelListView that was created inside the current OnItemClickListener. What you see
is a ListView with an OnItemClickListener that creates another modelListView and another
nested OnItemClickListener to respond to tap events for the modeListView.

The nested click listener pops a toast message indicating whether the edit or delete item
was tapped. It also renames the position parameter from the outer OnItemClickListener

as masterListPosition to distinguish it from the position parameter in the nested
OnItemClickListener. This master position is used in the toast to indicate which reminder is
being potentially edited or deleted. Finally, the dialog.dismiss() method is invoked from the
click listener, which removes the dialog box completely.

Test the new feature shown in Figure 6-4 by running it on your device or emulator. Tap a
reminder and then tap either Edit Reminder or Delete Reminder from the new pop-up dialog
box. If the position of the reminder reported in the toast does not match the reminder you
tapped, double-check that you are appending the masterListPosition value to the text in
your toast and not using position. Press Ctrl+K | Cmd+K to commit this logic and use the
message Adds a ListView dialog for individual list items.

Reminders

Buy Learn Android Studio
Send Dad birthday gift
Dinner at the Gage on Friday

; . String squash racket
Edit Reminder g

Shovel and salt walkways

Delet® Reminder
Prepare Advanced Android syllabus
Buy new office chair

Call Auto-body shop for quote

delete 4
Renew memu.. ol .« club

Riv new Ralavu Andrnid nhnne

Figure 6-4. Simulating the deletion of a reminder

CHAPTER 6: Reminders Lab: Part 2 127

Providing Multichoice Context Menus

With the app beginning to take shape, you will now attack a feature that allows multiple
reminders to be edited in one operation. This feature is available only on devices running
API 11 and higher. You will make this feature conditionally available in the app by using the
resource-loading conventions. This process is explained later in this chapter and in detail in
Chapter 8. You will also need to include a check at runtime to decide whether to enable the
feature.

Start by creating an alternate layout for the reminder row items. Open the Project tool
window and right-click the res folder to bring up a context menu. Choose New Android
Resource File from the menu and enter reminders_row as the name in the dialog box, as
shown in Figure 6-5.

http://dx.doi.org/10.1007/9781430266013_8

128 CHAPTER 6: Reminders Lab: Part 2

-
® New Resource File - A -

File name: I reminders_row

Resource type: | Layout

Root glement: | LinearLayout

Source set: [main

Directory name: I layout

(&5} Orientation
_@ Ul Mode

@ Night Mode
[® Density

r‘ Touch Screen E
&= Keyboard -,
& TextInput

Navigation State

<

® New Resource File Sa—

Available qualifiers: Chosen qualifiers:

Eile name: I reminders_row

Resource type: { Layout

Root glement: lLinaarl.ayout

Source set: Imain

Directory name: | layout-vll

Ayailable qualifiers: Chosen qualifiers:

Platform API level:

It i

= = =
(=] Orientation

il UTMode

@ Night Mode
= Density
[™ Touch Screen -

<<
= Keyboard

Figure 6-5. New resource file for reminders_row

CHAPTER 6: Reminders Lab: Part 2

Select Layout as the Resource Type, which automatically changes the directory name to
layout. Select Version under the Available Qualifiers section and then click the double
chevron (>>) button to add Version to the list of chosen qualifiers. Enter 11 as the Platform

129

API Level and note that the directory name has been updated to reflect the chosen qualifier.

These are called resource qualifiers and they are interrogated during runtime to allow you
to customize your user interface for particular devices and platform versions. Press Enter
(or click OK) to accept this new resource-qualified directory and continue. If you open
the Project tool window and set its view to Android as in Figure 6-6, you will see both

reminders_row layout files grouped together under the layout folder. Again, the Android view
of the project window groups related files together to allow you to efficiently manage them.

® Reminders - [C:\androidBook\Reminders] - [app] - ..\app\src\main\res\layout-

_E_ile _gdit View _u_avfig_ate __Qode Ana_lyze Refactor _B_t_:ild Rgn _Iools v

OHOD 0 o .. $ Wap~| D
[Reminders ' "3 app » [src) 1 main) [res) B layout-vl) © remi
€| ‘& Android 3 @ s | %~ 1~ | © remind
g 7 Project <?xml
: 5 Packages € P<Line
: .
g Scopes ressjgerber.temlnde:s o a
8| o projectFiles [eminder
% ¥ B RemindersActivity (A1<¢/Lin
%"' s Droducticn :em!nders[).bAdapter

o Tosls emindersSimpleCursorAdapter

* Changed Files ress.gerber.reminders (androidTest)

* Default |

v [layout

Figure 6-6. Grouped layouts

Copy the entirety of the original reminders_row layout and paste it into the newly created
layout for version 11. Now change the background attribute of the inner horizontal

% activity_remindersxml

v [E1 reminders_row.xml (2)

(=Y 2
% reminders_row.xml

~ . .
= reminders_row.xml (v11)

» [menu
> [values
» (& Gradle Scripts

LinearLayout by using the following:

android:background="?android:attr/activatedBackgroundIndicator"”

130 CHAPTER 6: Reminders Lab: Part 2

This value assigned to the background attribute is prefixed with ?android:attr/, which refers
to a style defined in the Android SDK. The Android SDK provides many such predefined

attributres, and you may use them in your app. The activatedBackgroundIndicator attribute
uses the system-defined color for the background of items activated during multiselect mode.

Targeting Earlier SDKs

Now you will learn how to introduce a platform-dependent feature. Open the Project tool
window and open the build.gradle file for the app module under the Gradle Scripts section

(It will be the second entry). These Gradle files hold the build logic for compiling and packaging
the app. All the configuration regarding which platforms your app supports is located in

these special files (Chapter 13 explores the Gradle build system in depth). Notice that the
minSdkVersion is set to 8 which allows your app to run on 99%-+ of all Android devices. The
feature we are about to create requires a minimum SDK (aka API) version of 11. The code

and features we cover in this section will allow users running version SDK 11 or higher to take
advantage of a feature called contextual action mode. Furthermore, those running an SDK
version less than 11 will not see this feature, but more importantly, their app will not crash.

Adding Contextual Action Mode

This next feature introduces a context action menu during multiselect mode, which is a list
of actions that can be applied to the context of all of the selected items. Add a new menu
resource by right-clicking the res/menu directory and selecting New » Menu resource file
and name it cam_menu. Decorate it with the following code:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/menu_item_delete reminder"
android:icon="@android:drawable/ic_menu_delete"
android:title="delete" />
</menu>

This resource file defines a single delete action item for the context menu. Here you are
also using slightly different attribute values. These special values are similar to what you
used in the background attribute earlier in that they give you access to built-in Android
defaults. However, the ?android:attr/ prefix is used only when referencing a style attribute.
The syntax used here in these attributes follows a slightly different form. Using the at symbol
(@) triggers a namespace lookup for resource values. You can access various namespaces in
this way. The android namespace is where all of the built-in Android values are located. Within
this namespace are various resource locations such as drawable, string, and layout. When
you use the special @+id prefix, it creates a new ID in your project’s R.java file, and when you
use the @id prefix, it looks for an existing ID in the R.java file of the Android SDK. This example
defines a new ID name, menu_item_delete_reminder, which is associated with the menu
option. It also pulls an icon out of the android:drawable namespace, which is used as its icon.

http://dx.doi.org/10.1007/9781430266013_13

CHAPTER 6: Reminders Lab: Part 2 131

With the new context menu and an alternate layout for devices running API 11 or higher,
you can add a check to conditionally enable multiselect mode with the context action menu.
Open RemindersActivity and add the following if block at the end of the onCreate method:

if (Build.VERSION.SDK INT >= Build.VERSION CODES.HONEYCOMB) {
}

The Build class is imported from the android.os package and gives you access to a set of
constant values that can be used to match a device with a specific API level. In this case,
you are expecting the API level to be at or above HONEYCOMB which contains an integer value
of 11. Insert the code in Listing 6-4 inside the if block you just defined. The if block protects
devices that are running an OS less than Honeycomb without which the app would crash.

Listing 6-4. MultiChoiceModeListener Example

mListView.setChoiceMode(ListView.CHOICE MODE MULTIPLE_MODAL);
mListView.setMultiChoiceModelistener(new AbsListView.MultiChoiceModelistener() {
@0verride
public void onItemCheckedStateChanged(ActionMode mode, int position, long id, boolean
checked) { }

@0verride

public boolean onCreateActionMode(ActionMode mode, Menu menu) {
MenuInflater inflater = mode.getMenuInflater();
inflater.inflate(R.menu.cam_menu, menu);
return true;

}

@0verride
public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
return false;

}

@0verride
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
switch (item.getItemId()) {
case R.id.menu_item delete reminder:
for (int nC = mCursorAdapter.getCount() - 1; nC >= 0; nC--) {
if (mListView.isItemChecked(nC)) {
mDbAdapter.deleteReminderById(getIdFromPosition(nC));

}

mode.finish();

mCursorAdapter.changeCursor (mDbAdapter.fetchAllReminders());
return true;

}

return false;

132 CHAPTER 6: Reminders Lab: Part 2

@0verride
public void onDestroyActionMode(ActionMode mode) { }

};

Resolve any imports. You will notice that getldFromPositon() is not defined and is flagged
red. Place your cursor on the method and press Alt+Enter to invoke IntelliSense and select
Create Method. Select RemindersActivity as the target class. Select int as the return value.
Decorate the method as seen in Listing 6-5.

Listing 6-5. getldFromPosition() method

private int getIdFromPosition(int nC) {
return (int)mCursorAdapter.getItemId(nC);
}

The preceding logic defines a MultiChoiceModelistener and attaches it to the ListView.
Whenever you long-press an item in the ListView, the runtime invokes the onCreateActionMode()
method on the MultiChoiceModelistener. If the method returns with the boolean true value,
multichoice action mode is entered. The logic in the overridden method here inflates a context
menu that is displayed in the action bar when in this mode. The benefit of using multichoice
action mode is that you can select multiple rows. One tap selects the item, and a subsequent tap
deselects the item. As you tap each of the items from the context menu, the runtime will invoke
the onActionItemClicked() method with the menu item that was tapped.

In this method, you check to see whether the delete item was tapped by comparing the
itemId with the id of the delete element you added to the menu item. (See the XML listing
at the start of this section for a description of the delete item’s ID.) If the item is selected,
you loop over each of the list items and request that mDbAdapter delete them. After deleting
the selected items, the logic invokes finish() on the ActionMode object, which will disable
multiselect action mode and return the ListView to its normal state. Next you invoke
fetchAllReminders() to reload all the reminders from the database and pass the cursor
returned from that call to the changeCursor method on the mCursorAdapter object. Finally,
the method returns true to indicate that the action has been properly handled. In every other
case where the logic is not handled, the method returns false, indicating that some other
event listener can handle the tap event.

Android Studio will highlight a couple of statements in error because you are using APIs that
are not available on platforms older than Honeycomb. This error is generated from Lint, a
static analysis tool built into the Android SDK and fully integerated into Android Studio. You
need to add the following annotation to the RemindersActivity.onCreate() method either
above or below the @0verride annotation and resolve the import for TargetApi:

@TargetApi(Build.VERSION CODES.HONEYCOMB)

This special annotation tells Lint to treat the method call as targeting the supplied API level
regardless of what the build configuration specifies. Commit your changes to Git with the
message Adds Contextual Action Mode with context action menu. Figure 6-7 depicts
what you might see when you build and run the app to test the new feature.

CHAPTER 6: Reminders Lab: Part 2 133

Buy Learn Android Studio

Send Dad birthday gift

Dinner at the Gage on Friday

String squash racket
SHEELLEEETENE

Prepare Advanced Android syllabus

Buy new office chair

Call Auto-body shop for quote

Renew membership to club

Rins new Ralavv Andrnid nhane

Figure 6-7. Multichoice mode enabled

Implementing Add, Edit, and Delete

So far, you have added logic to delete reminders from the list. This logic is available
exclusively in contextual action mode. You currently have no way to either insert new
reminders or modify existing reminders. However, you will now create a custom dialog box
to add reminders, and another to edit existing reminders. Eventually, you will bind these
dialog boxes to RemindersDbAdapter.

Before proceeding, you need to define a few additional colors. Add the following color
definitions to your colors.xml file:

<color name="light grey">#bababa</color>
<color name="black">#000000</color>
<color name="blue">#ff1118ff</color>

Note Typically, you would have an overall color theme for your app, which would ensure consistency
between all screens and dialog boxes. However, color theme is beyond the scope of this simple lab.

134 CHAPTER 6: Reminders Lab: Part 2

Planning a Custom Dialog Box

A good habit to develop is to sketch your Ul by using simple tools prior to implementing it.
Doing so allows you to visualize how elements will fit on the screen prior to investing any
code. You can use an editor such as Inkscape, which works across platforms, or you can
use something as simple as notebook paper and a pencil. In the mobile business, these
sketches are called wireframes.

Figure 6-8 is an illustration of our custom dialog box done with Inkscape. The wireframe
is intentionally informal, to emphasize the placement of components rather than a
specific look and feel.

New Reminder

Important

Figure 6-8. Wireframe sketch of the custom dialog box

Note Some of the custom artwork and wireframes in this book were created using Inkscape,
a multiplatform vector graphics editor. It is freely available at www. inkscape.org.

With the wireframe in place, you can start planning how to line-up the components on-screen.
Since most components flow from top to bottom, using a vertical LinearLayout for the
outermost container is an obvious choice. However, the two buttons at the bottom are side
by side. For these you could use a horizontal LinearLayout and nest it inside the containing
vertical LinearLayout. Figure 6-9 adds annotations to the drawing and highlights this nested
component.

http://www.inkscape.org/

CHAPTER 6: Reminders Lab: Part 2 135

Vertical TextView EditText
Linear Layout

New Reminder

Check Box Important
Horizontal ' I]
Linear Layout h

Button Button

Figure 6-9. Wireframe sketch with widget labels

Moving from Plans to Code

With these wireframes in place, try to design the layout by using the Visual Designer. Begin
by right-clicking the res directory in the Project tool window and selecting the Create a New
Android Resource File option and give your resource file a name of dialog_custom and then
choose Layout as the Resource type. Complete the dialog box by using LinearlLayout as
your Root element. To reproduce our wireframe, drag and drop Views from the palette onto
the stage. Listing 6-6 contains the completed layout XML definition with the ID values you
will use in the Java code.

Listing 6-6. Completed dialog_custom.xml|

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/custom_root_layout"
android:layout_width="300dp"
android:layout_height="fill parent"
android:background="@color/green"
android:orientation="vertical"
>

<TextView
android:id="@+id/custom_title"
android:layout_width="fill parent"
android:layout_height="60dp"
android:gravity="center_vertical"
android:padding="10dp"
android:text="New Reminder:"
android:textColor="@color/white"
android:textSize="24sp" />

This book was purchased by tanakasy@fukuoka-edu.ac.jp

136 CHAPTER 6: Reminders Lab: Part 2

<EditText
android:id="@+id/custom_edit_reminder"
android:layout width="fill parent"”
android:layout_height="100dp"
android:layout_margin="4dp"
android:background="@color/light_grey"
android:gravity="start"
android:textColor="@color/black">
<requestFocus />

</EditText>

<CheckBox
android:id="@+id/custom_check_box"
android:layout_width="fill parent"
android:layout_height="30dp"
android:layout_margin="4dp"
android:background="@color/black"
android:paddinglLeft="32dp"
android:text="Important"
android:textColor="@color/white" />

<LinearlLayout
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="horizontal">

<Button
android:id="@+id/custom_button_cancel"
android:layout_width="odp"
android:layout_height="60dp"
android:layout_weight="50"
android:text="Cancel"
android:textColor="@color/white"
/>

<Button
android:id="@+id/custom_button_commit
android:layout_width="odp"
android:layout_height="60dp"
android:layout_weight="50"
android:text="Commit"
android:textColor="@color/white"
/>

</Linearlayout>

</LinearlLayout>

CHAPTER 6: Reminders Lab: Part 2

Creating a Custom Dialog Box

You will now use the completed dialog layout in RemindersActivity. Listing 6-7 is
an implementation of a new fireCustomDialog() method. Place this code in the
RemindersActivity.java file, just above the onCreateOptionsMenu() method and
resolve imports.

Listing 6-7. The fireCustomDialog() Method

private void fireCustomDialog(final Reminder reminder){
// custom dialog
final Dialog dialog = new Dialog(this);
dialog.requestWindowFeature(Window.FEATURE_NO TITLE);
dialog.setContentView(R.layout.dialog custom);

TextView titleView = (TextView) dialog.findViewById(R.id.custom title);

137

final EditText editCustom = (EditText) dialog.findViewById(R.id.custom edit reminder);

Button commitButton = (Button) dialog.findViewById(R.id.custom button_commit);
final CheckBox checkBox = (CheckBox) dialog.findViewById(R.id.custom check box);

LinearLayout rootlayout = (LinearLayout) dialog.findViewById(R.id.custom root layout);

final boolean iskEditOperation = (reminder != null);

//this is for an edit

if (isEditOperation){
titleView.setText("Edit Reminder");
checkBox.setChecked(reminder.getImportant() == 1);
editCustom.setText(reminder.getContent());
rootLayout.setBackgroundColor(getResources().getColor(R.color.blue));

}

commitButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
String reminderText = editCustom.getText().toString();
if (isEditOperation) {
Reminder reminderEdited = new Reminder(reminder.getId(),
reminderText, checkBox.isChecked() ? 1 : 0);
mDbAdapter.updateReminder (reminderEdited);
//this is for new reminder
} else {
mDbAdapter.createReminder (reminderText, checkBox.isChecked());
}
mCursorAdapter.changeCursor (mDbAdapter.fetchAllReminders());
dialog.dismiss();

b

138 CHAPTER 6: Reminders Lab: Part 2

Button buttonCancel = (Button) dialog.findViewById(R.id.custom_button_cancel);
buttonCancel.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
dialog.dismiss();
}
D;

dialog.show();
}

The fireCustomDialog() method will be used for both inserts and edits, since there is little
difference between both operations. The first three lines of the method create an Android
dialog box with no title and inflate the layout from Listing 6-6. The fireCustomDialog()
method then finds all of the important elements from this layout and stores them in local
variables. Then the method sets an isEditOperation boolean variable by checking whether
the reminder parameter is null. If there is a reminder passed in (or if the value is not null),

the method assumes that this is not an edit operation and the variable is set to false;
otherwise, it is set to true. If the call to fireCustomDialog() is an edit operation, the title is
set to Edit Reminder while the CheckBox and EditText are set using values from the reminder
parameter. The method also sets the background of the outermost container layout to blue,
in order to visually distinguish an edit dialog box from in insert dialog box.

The next several lines compose a block of code that sets and defines an OnClickListener
for the Commit button. This listener responds to click events on the Commit button by
updating the database. Again, the isEditOperation() is checked, and if an edit operation is
underway, then a new reminder is created by using the ID from the reminder parameter and
the values from the EditText and on-screen check-box value. This reminder is passed to
mDbAdapter by using the updateReminder() method.

If an edit is not underway, the logic asks mDbAdapter to create a new reminder in the database
by using the values from the EditText and on-screen check-box value. After either the

update or create call is invoked, the reminders are reloaded by using the mCursorAdapter.
changeCursor() method. This is logic similar to that which you added earlier in Listing 6-5. The
click listener dismisses the dialog box after the reminders are reloaded.

After configuring the click behavior of the Commit button, the example sets another click listener
for the Cancel button. This listener simply dismisses the dialog box. With the behavior for both of
these buttons specified, the example concludes by showing the custom dialog box.

Now you can use this new method in the OnItemClickListener for the modeListView in the
onCreate() method. Find the onItemClick() method for this listener and replace the entire
method with the following code:

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
//edit reminder
if (position == 0) {
int nId = getIdFromPosition(masterListPosition);
Reminder reminder = mDbAdapter.fetchReminderById(nId);
fireCustomDialog(reminder);
//delete reminder

CHAPTER 6: Reminders Lab: Part 2 139

} else {
mDbAdapter.deleteReminderById(getIdFromPosition(masterListPosition));
mCursorAdapter.changeCursor (mDbAdapter.fetchAllReminders());

}

dialog.dismiss();

}

To edit a reminder, you replace the Toast.makeText() call with a call to find the reminder
by using the ListView position. This reminder is then passed to the fireCustomDialog()
method to trigger the edit behavior. To delete a reminder, you use logic identical to that you
added in Listing 6-5 during multichoice mode. Again, mDbAdapter.deleteReminderById()

is used to delete the reminder, and the changeCursor () method is used with the cursor
returned from the mDbAdapter.fetchAllReminders() call.

Find the onOptionsItemSelected() method at the very bottom of the RemindersActivity.java
file and modify it to look like Listing 6-8.

Listing 6-8. onOptionsltemSelected Definition

public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {

case R.id.action_new:
//create new Reminder
fireCustomDialog(null);
return true;

case R.id.action_exit:
finish();
return true;

default:
return false;

}

Here you simply add a call to fireCustomDialog() when the selected menu item is
action_new item. You pass null to the method, as the logic covered earlier checks for
a null value and sets the isEditOperation to false and thus invoking a New Reminder
dialog box. Run the app and test the new feature. You should be able to see the new
custom dialog boxes. You will see a green dialog box when you create a reminder, and
a blue dialog box when you edit a reminder, as shown in Figure 6-10 and Figure 6-11
respectively. Test the menu items to make sure that the creating and deleting operations
function as they should. Commit your changes to Git with a commit message of Adds
database Create, Read, Update, and Delete support with custom dialogs.

140 CHAPTER 6: Reminders Lab: Part 2

New Reminder:

Important

Cancel Commit

Edit Reminder

Buy Learn Android Studio

Important

Cancel Commit

Figure 6-11. Edit Reminder dialog box

CHAPTER 6: Reminders Lab: Part 2 141

Adding a Custom Icon

With all of the features in place, you can add a custom icon as the finishing touch. You
can use any image editor to create an icon or, if you are not graphically inclined, find some
royalty-free clip art on the Web. Our example replaces the ic_launcher icon with custom
artwork created in Inkscape. Open the Project tool window and right-click the res/mipmap
directory. Now select New » Image Asset. You will see a dialog box like Figure 6-12. Click
the elipses button located on the far right of the Image file: field and navigate to the
location of the image asset you crated. Leave the rest of the settings as they appear in
Figure 6-13. Now click Next, and in the subsequent dialog box click Finish.

Asset Type: [Launcher Icons n Preview
Foreground: @ Image O Clipat () Text t__ﬂ
Image file: | C:\androidBook\ic_launcher.png IEI -

MDPI
[Trim surrounding blank space

Additional padding: G’ 1 tg
Foreground scaling: (®) Crop (O Center

Shape: @ None O Square O Circle HDPI
Background color: E|
Resource name: | ic_launcher |

XHDPI

Figure 6-12. New Image Asset dialog box

There are a number of folders with the name mipmap. These folders each have suffixes
that are designated screen-size qualifiers. The Android runtime will pull resources out of
a particular folder, depending on the screen resolution of the device on which the app is
running. Resource folders and their suffixes are covered in more detail in Chapter 8.

Insert the following lines of code into the onCreate() method of RemindersActivity, after the
line of code which inflates the layout, setContentView(R.layout.activity reminders);. This
code displays a custom icon in your Action Bar:

ActionBar actionBar = getSupportActionBar();
actionBar.setHomeButtonEnabled(true);
actionBar.setDisplayShowHomeEnabled(true);
actionBar.setIcon(R.mipmap.ic_launcher);

When you run the code, you will see your custom icon in the Action Bar. Figure 6-13 shows
an example of the app running with the custom icon.

http://dx.doi.org/10.1007/9781430266013_8

142 CHAPTER 6: Reminders Lab: Part 2

W1 5554News S L=

@8 Reminders

Buy Learn Android Studio

Send Dad birthday gift

Dinner at the Gage on Friday

String squash racket

Shovel and salt walkways

Prepare Advanced Android syllabus
Buy new office chair

Call Auto-body shop for quote

Renew membership to club

Riv new Ralavv Andrnid nhnne

Figure 6-13. Custom icon in action bar

Press Ctrl+K | Cmd+K and commit your changes with the message Adds a custom icon.

Summary

Congatulations! You have implemented your very first Android app using Android Studio.
In the process, you learned how to edit XML layouts using the Visual Designer. You also
learned how to edit raw XML using the Text mode. The chapter showed you how to
conditionally implement Contextual Action Mode on platforms that support the feature.
Finally, you saw how to add a custom icon for various screen densities.

Chapter

Introducing Git

The Git version control system (VCS) is fast becoming the de facto standard, not only in
Android application development, but for software programming in general. Unlike earlier
version control systems that require the use of a central server, Git is distributed, which
means that each copy of the repository contains the entire history of the project, and no
contributor is privileged. Git was developed by Linus Torvalds of Linux fame in order to
manage the development of the Linux operating system. Like the open source movement
itself, Git is systemically nonhierarchical and encourages collaboration.

While Git offers a wealth of features from the command line, this chapter focuses primarily
on using Git from within Android Studio. The Intellid platform underpinning Android Studio
has offered outstanding support for several VCS systems over the years, including Git.
The consistency with the different supported systems is presented in a way that makes

it easy for both newcomers and professionals to be proficient. However, it is important to
understand the differences between using Git from within Android Studio and using Git
from the command line. This chapter explains everything you need to get started with Git
in great detail. You’ll reuse the Reminders app that you began in earlier chapters to learn
the fundamentals of committing, branching, pushing, and fetching, among other important
commands. You'll work with both local and remote Git repositories and see how to use Git
and Android Studio in a collaborative environment.

Open the HelloWorld project you created in Chapter 1. If you skipped that chapter, create a
new project from scratch named HelloWorld. Use all of the default settings as you progress
through the wizard. You will use this project briefly to understand the basics of Git setup.

Installing Git

Before you can begin using Git, you need to install it. Point your browser to http://git-scm.
com/downloads. Click the Download button for your operating system, as shown in
Figure 7-1.

143

http://dx.doi.org/10.1007/9781430266013_1
http://git-scm.com/downloads
http://git-scm.com/downloads

144 CHAPTER 7: Introducing Git

Downloads

Latest source release

1.9.0

@ Macosx A¥ Windows
a Notes (2014-02-14)

d Linux ¥ Solaris Download for Windows

Older releases are available and the Git source

repository is on GitHub.

Figure 7-1. Git download page

We recommend installing Git in the C:\java\ directory on Windows or in the ~/java
directory on Mac or Linux. Wherever you decide to install it, be sure that the entire path

is free from spaces. For example, do not install Git in the C:\Program Files directory,
because there is a space between Program and Files. Command line oriented tools like

Git can potentially have trouble with directories that have a space in their name. Once your
installation is complete, you must be sure that the C:\java\git\bin\ directory is part of your
PATH environmental variable. See Chapter 1 for detailed instructions on how to add a path to
the PATH environmental variable.

Launch the Git Bash terminal by clicking the Git Bash icon. If you're running a Mac or Linux,
just open a terminal. You need to configure Git with your name and e-mail so that your
commits will have an author. From Git Bash, issue the following commands and replace
John Doe’s name and e-mail address with your own. Figure 7-2 shows an example.

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

-
4 MINGW32/c/Users/Clifton =

s git config --global user.name "Clifton Craig”

$ git config --global user.email "Clifton.Craig@gmail.com”

5.

L]

Figure 7-2. Adding your name and e-mail to Git

Return to Android Studio to continue setting up Git integration with Android Studio. Navigate
to File » Settings, and then find Git under the Version Control section in the left pane. Click
the ellipsis button and navigate to the Git binary you just installed. Click the Test button to
ensure that your Git environment is operational. You should see a pop-up indicating that Git
executed successfully, as well as the version of Git you installed.

http://dx.doi.org/10.1007/9781430266013_1

CHAPTER 7: Introducing Git 145

Navigate to VCS » Import into Version Control » Create Git Repository. When the dialog
box prompts you to select the directory where the new Git repository will be created,
make sure you choose the project root directory HelloWorld. You can optionally click the
little Android Studio icon in the directory chooser dialog box. This icon will navigate to the
project’s root directory, as illustrated in Figure 7-3. Click the OK button, and your local Git
repository will be created.

[rmm—
Select directory for git init
i Project Directory (Ctrl+2)]e new Git repository will be created.
@ Ilﬁlt: @ X O @ Hide path
| C\andrBidBook\HelloWorld [l

v J anuTviuuuuK
» [AndEngine
» [AndEngineProject
» [Crazylines
» [Currencies
» [DebugMe
» [GradleWeather
» [HelloCloud
» [.gradle
> [.idea
v Dlapp
» [build
» [Jlibs
v Blsec
» [androidTest

v [main
Drag and drop a file into the space above to quicldy locate it in the tree.

MK (conce | [ren |

Figure 7-3. Selecting the directory for your Git repository

You will notice that most of the file names in your Project tool window have turned brown.
This means that these files are recognized by Git locally but are not being tracked by Git
and not scheduled to be added. Git manages commits in a two-stage approach (which is
different from the approach used by other VCS tools such as Subversion and Perforce).
The staging area is where Git organizes changes prior to a commit. The differences
between the changes in progress, the staging area changes, and the committed changes
are significant and can overwhelm new users. As a result, Android Studio does not expose
these differences. Instead you get one simple changes interface that allows you to manage
modified files and commit them with ease.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

146 CHAPTER 7: Introducing Git

Ignoring Files

When you create the local repository, Android Studio generates special .gitignore files that
prevent certain paths from being tracked. Unless you specify otherwise, Git will continue to
track all the files in this directory and its subdirectories. However, .gitignore files can tell Git
to ignore certain files or entire directories.

Typically, you will have one .gitingore file for the root directory, and one .gitignore file for
each project. In HelloWorld, one .gitignore is located in the root of HelloWorld, and one
.gitignore is located in the root of the app folder. Open the .gitignore file located in the root
of HelloWorld and inspect its contents. Figure 7-4 illustrates the generated .gitignore file in the
project’s root directory. By default, Android Studio sets certain files to be excluded from your Git
repository. The list includes files that are either generated by the project build or control settings
specific to your local machine. For instance, the /. idea/workspace.xml file controls settings

for your local configuration of Android Studio. Though it is possible to track this in Git, it is not
necessarily a part of the project you are building and may in fact pose a problem because this
file is unique to every workspace e.g. computer. Notice that one of the entries in .gitignore is
/local.properties. Like workspace.xml, local.properties is unique to every computer.

Pay attention to the /build entry in the list. Gradle, the Android Studio build system covered
in depth in Chapter 13, places all of its output here as you compile and run your project.
Because this folder will contain everything from .class files to .dex files to the final installable
Android package, and because its contents are constantly changing, it makes little sense

to track it with Git. Find the local.properties file in the Project tool window. You will notice
that it’s black, whereas the other files are brown.

é:I.g;‘:adle
/local.properties

i /.idea/workspace.xml
. /.idea/libraries
.DS_Store

/build

Figure 7-4. The root .gitignore file contents

Android Studio uses a color scheme that allows you to easily identify what your version
control system will see as you work. As we’ve already stated, brown indicates that a a file is
recognized by Git locally but is not being tracked by Git, and is not scheduled to be added.
Blue indicates a file that is being tracked by Git and has been changed. Green is used for
brand-new files that are being tracked by Git. Black indicates files that either have not been
changed or are not being tracked. Android Studio constantly keeps track of files that are
added to your project and prompts you as necessary to keep these files in sync with Git.

http://dx.doi.org/10.1007/9781430266013_13

CHAPTER 7: Introducing Git 147

Adding Files

Open the Changes view at the bottom of the screen. It includes two sections: Default and
Unversioned Files. The Default section, initially empty, represents the active changelist. As
you modify and create files, they will fall under this section, because it holds files that are
ready to be committed to your VCS. The Unversioned Files section contains everything that
is not being tracked by VCS.

Because all of the project files are not yet tracked, they fall under the Unversioned Files
section. You will want to add these to your repository. On the left side of the Changes view
are two columns of icons. In the right column, click the third icon from the top (a folder icon);
see the circled icon in Figure 7-5. This is a toggle that enables you to group files by folder

to better understand their relative location within your project. Right-click the Unversioned
Files section header and click Add to VCS from the context menu to add these files to the Git
index. Alternatively, you can click and drag the entire section to the bold Default section.

Changes: Iml Log

Default (No files)

» Unversioned Files (35 files)

Figure 7-5. Group files by folders

After adding all the files, click the VCS icon with the green arrow pointing upward. This
opens the familiar Commit dialog box you began using in Chapter 5. Click Commit to record
your changes, and the Default section will eventually empty out. You can also press Ctrl+K |
Cmd+K to perform the same action. From this point on, each file you touch while in Android
Studio will be tracked under Git.

Cloning the Reference App: Reminders

This section extends the Reminders app that you created in Chapters 5 and 6. We invite you
to clone this project using Git in order to follow along, though you will be recreating this project
with a new Git repository based forked from the repostory used in Chapters 5 and 6. If you do
not have Git installed on your computer, see Chapter 7. Open a Git-bash session in Windows
(or a terminal in Mac or Linux) and navigate to C:\androidBook\reference\ (If you do not have a
reference directory, create one. On Mac navigate to /your-labs-parent-dir/reference/) and issue
the following git command: git clone https://bitbucket.org/csgerber/reminders-git.git
RemindersGit. You will use Git features to modify the project as if you were working on a team.

http://dx.doi.org/10.1007/9781430266013_5
http://dx.doi.org/10.1007/9781430266013_5
http://dx.doi.org/10.1007/9781430266013_6
http://dx.doi.org/10.1007/9781430266013_5
http://dx.doi.org/10.1007/9781430266013_6
http://dx.doi.org/10.1007/9781430266013_7
https://bitbucket.org/csgerber/reminders-git.git

148 CHAPTER 7: Introducing Git

Through the process, you will learn how to fork and clone a project, and set-up and maintain
branches as you develop features. Before beginning this exercise, rename the Reminders
project you completed in chapter 6 to RemindersChapter6 because you will be recreating
this folder shortly. In windows you can right click the folder in Explorer and choose rename.
On Linux or Mac run the following command: mv ~/androidBook/Reminders ~/androidBook/
RemindersChapter6.

Forking and Cloning

Forking a remote repository involves making a clone from one remote account/partition

to another remote account/partition on a single web-hosting service. Fork is not a Git
command; it is an operation of a web-hosting service such as Bitbucket or GitHub. As far as
we know, the two more popular web-hosting services, Bitbucket and GitHub, do not allow
forks between their servers. Forking a project is the process of copying a project from its
original remote repository to your own remote Git repository for the sake of changing it or
making derivative work.

Historically, forking had a somewhat negative connotation, because it was often the result
of different end goals or disagreements among project members. These differences often
resulted in alternate versions of seemingly identical software from multiple groups, and no
clear official version that the user community could rely on. These days, however, forking
is strongly encouraged thanks to Git. Forking is now a natural part of collaboration. Many
open source projects use forks as a means of improving the overall source base. Members
encourage others to fork and make improvements to the code. These improvements are
pulled back into the original project by means of a pull request, or an individual’s personal
request to pull a bug fix or feature back into the main line. Because merging and branching
are so flexible with Git, you can pull anything into your repository, from a single commit to an
entire branch.

This chapter doesn’t cover the entirety of pull requests and open source collaboration but
does cover the features that fuel this powerful form of collaboration. Log into your Bitbucket
account and find the case studies on Bitbucket. If you do not yet have a Bitbucket account,
navigate your browser to bitbucket.org and sign-up. Signing-up takes about 30 seconds.
Once you’ve logged into Bitbucket, you can find the Reminders repository by using the
search box in the upper right corner of the Bitbucket web interface. In that search box, type
csgerber/reminders. Again, do not confuse this with the finished reminders-git repository
which you cloned earlier as a reference. To fork this project, click the Fork button along the
left margin as shown in Figure 7-6. When prompted by the subsequent window, accept the
defaults and click the Fork repository button as showing in Figure 7-7.

http://dx.doi.org/10.1007/9781430266013_6

CHAPTER 7: Introducing Git

jgcsgerberfreminders—i x i \
€ - C | @ httpsy//bitbucket.org/csgerber/reminders
ii* Apps [') iPhone Audio Routing [') Ul Automation (] News [E@ iOS team .

= ©Bitbucket Dashboard~ Teams~ Repositories ~

Cgeoe Overview
& reminders

ACTIONS

&, Clone Last updated 4 hc

Language And
23 Compare i

-C FG%

NAVIGATION

Access level Rea

Overview
Source
Commits
Branches

Pull requests

R o@®E

Downloads

Figure 7-6. Click Fork in the Reminders repository left margin controls

Fork csgerber / reminders

Name® l feminders

Description

It's encouraged to write a litle about why you are forking.

Access level # This is a private repository
This repository does not allow public forks.

Forking | Allow only private forks -

Permissions) Inherit repository user/group permissions

Project [Issue tracking
management o wiki

Repository integrations
HipChat ([Enable HipChat notifications

Fork re:@sitory Cancel

Figure 7-7. Click the Fork repository button

149

150 CHAPTER 7: Introducing Git

Now, we're going to clone the repository that you just forked. In Git, cloning is the process
of copying an entire Git project from another location, usually from a remote to local.

Find your fork of the project and copy the URL. You can do this by typing your-bitbucket-
username/reminders in the search box of the Bitbucket web interface. Directly below the
search box, along the upper-right of the Bitbucket web interface, you will find the clone box
in which there will be a URL that should look something like: git@bitbucket.org:csgerber/
reminders.git or https://your-bitbucket-username@bitbucket.org/your-bitbucket-
username/reminders.git. If you don’t have an http URL then click the button next to the
URL which should be labeled SSH as seen in Figure 7-8. This will expose a dropdown
allowing you to select an http URL. Navigate to VCS > Checkout from Version Control >
Git. The dialog box shown in Figure 7-9 opens, prompting you for a VCS Repository URL, a
Parent Directory, and a Directory Name. The VCS Repository URL is a URL from the clone
box earlier, and the combination of Parent Directory and Directory Name is where you want
the copy to be placed on your local computer. By default, the name of the project in the
Directory Name is lower-case. We recommend you hame your projects in upper-case, so
please change that according to Figure 7-9.

Find a rep

& SSH~ gitgbitbucket.org:csgerber/reminders.gi’ @ v

Recent activity £
: B 9 commits
Tags

Figure 7-8. The Bitbucket Share URL

.
Clone Repository

Ves Repository URL: | https://cliffl6@bitbucket.org/csgerber/reminders.git |\ &

Parent Directory: Ci\androidBook |: |

Directory Name: | Reminders |

m . CanL}I | Help

A = A

Figure 7-9. Cloning the repository with the Git GUI

Click Clone, and the source code will be copied locally.

git@bitbucket.org:csgerber/reminders.git
git@bitbucket.org:csgerber/reminders.git
https://your-bitbucket-username@bitbucket.org/your-bitbucket-username/reminders.git
https://your-bitbucket-username@bitbucket.org/your-bitbucket-username/reminders.git

CHAPTER 7: Introducing Git 151

Using the Git Log

The Git log is a powerful feature that gives you the ability to explore the commit history of your
project. Open the Changes tool window by clicking its tool button or pressing Alt+9 | Cmd+9 and
then select the Log tab to expose the log. Figure 7-10 illustrates the history of the Reminders
project through the final commit at the end of Chapter 6. This view shows the timelines
associated with the individual branches in the repository.

Version Control: | Local Changes
g s [T
& @) Branch:All# User: All# Date:All$ Paths:Alls | f3 1 3 9561-.:
i
e Subject Author Date
= . HEAD | master | origin/master JV:¥:EEFRNE LTS Adam Gerber 5/2/201512:31 PM
b
’é Adds database Create, Read, Update, and Delete support with custom dialogs Adam Gerber 5/2/201512:08 PM
>
£ | ® Adds Contextual Action Mode with context action menu Adam Gerber 5/2/201511:11 AM
;‘ Adds a ListView dialog for individual list items Adam Gerber 5/2/2015 9:26 AM
Adds Example reminders Adam Gerber 5/1/2015 7:51 PM
Adds SQLite database persistence for reminders and a new color for important reminders Adam Gerber 5/1/2015 7:37 PM
Adds new reminder eand exit menu options Adam Gerber 5/1/2015 6:40 PM
£ | 9 Adds ListView with custom colors Adam Gerber 5/1/2015 6:34 PM
"o
E Initial commit using new project wizard Adam Gerber 5/1/2015 4:28 PM
=
=
w
i
HEAD | [master| [originimaster |
tz-; 139¢9&0 Adam Gerber at 5/2/201512:31 PM
§ | Adds a custom icon
=
vi In 3 branches: HEAD, master, origin/master
LT Version Control [# Terminal = 0: Messages W 6: Android =% TODO
[C] Gradle build finished in 105 99ms (a minute ago)

Figure 7-10. Exploring the Git log

Clicking individual entries in the timeline reveals the files in a changelist to the right; these
are the files that were changed as part of the commit. Click the files from any particular
commit and press Ctrl+D | Cmd+D (or simply double-click them) to get a visual text diff,
which is a side by side comparison highlighting the changes to the files. You can use

the toolbar buttons above the changelist to edit the source, open the repository version
of a file, or revert selected changes. You can also use the window below the log to see
the committing author, date, time, and a hash code ID. These hash codes are unique IDs
that can be used to identify individual commits when using some of Git’s more advanced
features.

http://dx.doi.org/10.1007/9781430266013_6

152 CHAPTER 7: Introducing Git

Branching

Until now, you’ve made all your commits on a single branch called master, which is the
default branch name. However, you don’t need to remain on master. Git allows you to create
as many branches as you want, and branches can serve several purposes in Git. Here’s

a likely scenario. Say you’re working with a team of developers and you’ve each been
assigned specific tasks during a development cycle. Some of those tasks are features and
some are bug fixes. One logical way to approach this work is for each task to become a
branch. The developers all agree that when a task is complete and tested, the developer will
merge the task branch into a branch called dev and then delete the task branch. At the end
of the development cycle, the dev branch is tested by the QA team, which either rejects the
changes and kicks the project back to the development team, or signs-off on the cycle and
merges dev into master. This process is called Git Flow, and it is the recommended way to
develop software on a team with Git. You can read more about Git Flow here:

https://guides.github.com/introduction/flow/index.html

Git Flow works great with large teams, but if you’re developing solo or working with only

one or two other developers, you may want to agree on a different workflow. Whatever your
workflow, the branching functionality in Git is flexible and will allow you to adapt your workflow
to Git. In this section, we’ll assume you are working on a team project and have been given the
task of adding a feature in the Reminders app which allows users to schedule a Reminders
at particular times throughout the day.

Developing on a Branch

Open the Reminders-Git project you cloned earlier by choosing File » Import Project.
Right-click the Reminders-Git root folder in the project view and choose Git » Repository »
Branches to open the Branches prompt window. This prompt allows you to explore

all the available branches. Click New Branch from the prompt. Name your branch
ScheduledReminders, as in Figure 7-11.

Enter the name of new branch:

[ScheduledReminderd]

Figure 7-11. Creating a new branch with Git

The new branch will be created and checked out for you to work on. Open the Changes view
and click the green plus button to create a new changelist. Name it ScheduledReminders,
like your new branch, as the next round of changes will introduce the feature which
schedules reminders. Make sure the Make This Changelist Active check box is selected, as
shown in Figure 7-12.

https://guides.github.com/introduction/flow/index.html

CHAPTER 7: Introducing Git

Name: ScheduledReminders
Comment:

[¥] Make this changelist active] Track context

L a

Figure 7-12. Creating a new changelist for the branch work

To begin your new feature, you need to add a new option to the dialog box that shows
when a reminder is clicked. Open RemindersActivity.java and go to the top of your

onItemClick() method in the first OnItemClickListener nested class which is attached to
the mListViewvariable. Add Schedule Reminder as a third entry in the String array that
builds the clickable options as shown in line 92 of Figure 7-13. Next you need to allow the

user to set the time for the reminder when your new option is clicked. Find the second
nested OnItemClickListener that you attach to the modeListView that creates the dialog
box when individual reminders are clicked. This will be after the dialog.show() method

153

invocation. Look inside its onItemClick() method as seen on line 101 and make the changes

shown in Figure 7-13. You will need to resolve the import for the Date class.

mListView.setPnltemClicHListener (new AdapterView.OnltemClickListener() {

public void onItemClick (AdapterView<?> parent, View view, final int masterListPosition, long id) {
AlertDialog.Builder builder = new AlertDialog.Builder (ReminderaActivity.this);
ListView modelistView = new ListView (RemindersActivity.this);
String[] modes = new String[] { "Edit Reminder”, "Delete Reminder"”, "Schedule Reminder" };
ArrayRdapter<String> modehdapter = new ArrayAdapter<>(Remindershctivity.this,
android.R.layout.simple list item 1, android.R.id.textl, modes);
modelistView.setAdapter (modeddapter) ;
builder.setView (modeListView);
final Dialog dialog = builder.create():
dialog.show():
modelistView.setOnltemClickListener (new AdapterView.OnItemClickListener() {
goverride

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
if (position == Q) {
int nld = getldFromPosition(masterListPosition);
Reminder reminder = mDbAdapter.fetchReminderById(nId);
fireCustomDialog (reminder) ;

} else if (position == 1) |
mDbAdapter.deleteReminderByld (getIdFromPosition (masterListPosition));
mCursorAdapter.changeCursor (mDbAdapter. fetchAllReminders());

} else {
Date today = new Date();

new TimePickerDialog(RemindersActivity.this, null, today.gesiousrs() , today.gesMinutes (), false) .show();

}

dialeg.dismiss():

Figure 7-13. Changes for scheduled reminders

154 CHAPTER 7: Introducing Git

Here you change the else block where the reminders are deleted to an else if block,
which checks for the position at index 1. You add an else block that runs when the third
new option is clicked. This block creates a new Date representing today and uses it to build
a TimePickerDialog. Run the app now to test the new option. Figure 7-14 shows the new
feature in action.

Edit Reminder

Delete Reminder

Schedule Reminder

Figure 7-14. Trying the Schedule Reminder option

Now that you have part of your new feature working, press Ctrl+K | Cmd+K to commit with
the message Adds new scheduled time picker option. Go back to the IDE and move the
two lines that find the reminder outside of the position==0 condition. Mark the reminder
variable as final. See Figure 7-15 for an example.

110 @f public void onItemClick (AdapterView<?> parent, View view, int position, long id) {
il il H

112 [int nId = getIdFromPosition (masterlistPosition):

113 final Reminder reminder = mDbAdapter.fetchReminderById(nId):

114 //edit reminder

115 > if (position == 0){

116 fireCustomDialeg (reminder) ;

117

Figure 7-15. Move the reminder variable outside the if block

CHAPTER 7: Introducing Git 155

Next go to the else block you just added where you construct and show the time
picker dialog box. Add the following code just before the line that shows the dialog box
corresponding to line 113 in Figure 7-13:

final Date today = new Date();
TimePickerDialog.OnTimeSetListener listener = new TimePickerDialog.OnTimeSetListener() {
@0verride
public void onTimeSet(TimePicker timePicker, int hour, int minute) {
Date alarm = new Date(today.getYear(), today.getMonth(), today.getDate(), hour,
minute);
scheduleReminder(alarm.getTime(), reminder.getContent());
}

};

This creates a listener for the time picker dialog box. Inside this listener, you use today’s
date as the base time for your alarm. You then include the hour and minute chosen from
the dialog box to create the alarm date variable for your reminder. You use both the alarm
time and the reminder’s content in a new scheduleReminder () method. Android Studio will
flag the TimePicker as an unresolved class and flag the scheduleReminder() method as an
unresolved method. Press Alt+Enter to resolve the import for the TimePicker class. Press
F2 and Alt+Enter again to open the IntelliSense dialog box and then press Enter to have
Android Studio generate the method for you, as shown in Figure 7-16.

9 scheduleReminder (alarm.getTime (), reminder.getContent()):

}

¥ Create Method 'scheduleReminder'

r_:, Introduce local variable » [TimePickerDialog(RemindersActivity.this,null, today.gesHeuss(),tc
57 Add Braces to 'else' statement »

ismisa();

Figure 7-16. Generate method using IntelliSense

Choose the RemindersActivity class, as shown in Figure 7-17.

Choose Target Class

Figure 7-17. Selecting the RemindersActivity as the target class

Add the following code to the new method body:

AlarmManager alarmManager = (AlarmManager) getSystemService(Context.ALARM SERVICE);
Intent alarmIntent = new Intent(this, ReminderAlarmReceiver.class);
alarmIntent.putExtra(ReminderAlarmReceiver.REMINDER TEXT, content);

PendingIntent broadcast = PendingIntent.getBroadcast(this, 0, alarmIntent, 0);
alarmManager.set(AlarmManager.RTC_WAKEUP, time, broadcast);

This book was purchased by tanakasy@fukuoka-edu.ac.jp

156 CHAPTER 7: Introducing Git

Again, Android Studio will flag a bunch of errors for the missing imports in the code. Press
F2 then Alt+Enter to open the quick fix prompt and fix each error. The quick fix option will
eventually prompt you that ReminderAlarmReceiver does not exist. Press Alt+Enter and
select the first option to generate the class. Press Enter on the first popup dialog to use the
suggested package then press Enter again on the second popup dialog to add this new
class file to Git. Make the class extend BroadcastReceiver and implement the onReceive()
method. Your ReminderReceiver.java file should look like this:

package com.apress.gerber.reminders;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class ReminderAlarmReceiver extends BroadcastReceiver {
@0verride
public void onReceive(Context context, Intent intent) {

}

Tip Alternate between pressing F2 (next highlighted error) and Alt+Enter (quick fix) repeatedly
to have Android Studio fix many of the errors that arise as you copy the code from listings like
Figure 7-16. It will add missing imports as well as offer to generate code for undefined methods,
constants, and classes.

Return to the RemindersActivity. java file. Find and fix the last error by Pressing F2 then
Alt+Enter and select the second suggestion to code-generate a String constant, as
illustrated in Figure 7-18. Set the value of this text to "REMINDER_TEXT".

19?5 EJ private void scheduleReminder(long time, String content) {

198 [RlarmManager alarmManager = (AlarmManager) getSystemService (Context.ALARM SERVICE);
199; Intent alarmIntent = new Intent(this, ReminderAlarmReceiver.class):

200 alarmIntent.putExtra (ReminderAlarmReceiver.REMINDER TEXI, content):

2015 , \ indingIntent.getBroadcast(this, 0, alarmIntent, 0);
202 @ Create Class 'REMINDER_TEXT lr.RTC WAKEUP,

PUEIBBAE * Create Constant Field 'REMINDER_TEXT' -

206 @ @ Create Field 'REMINDER_TEXT'

205, || @ Createlnner Class 'REMINDER_TEXT'

206 | @ Rename Reference

207 f Ebase record 1d, given a list position

208, ©| B Introduce local variable » ht nPosition){

209% Cursor cursor = mDbAdapter.ietchAllReminders():

Figure 7-18. Generate a Constant field

CHAPTER 7: Introducing Git 157

Finally, open your AndroidManifest.xml file and add a receiver tag to define the new

BroadcastReceiver, as shown in Figure 7-19.

<?xml version="1.0" encoding="utf-8"2>
J<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.apress.gerber.reminders" >

<application
android:allowBackup="true"
android:icon="¢mipmap/ic_launcher"
android:label="Reminders"
android:theme="8style/AppTheme" >
<activity
android:name=".RemindersActivity"
android:label="Reminders" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"

</intent-filter>
</activity>
<receiver android:name=",ReminderAlarmReceiver"/>
</application>

1</manifest>

Figure 7-19. BroadcastReceiver manifest entry

/>

Run the app to test. You should be able to tap a reminder, select Schedule Reminder,

and set a time for it to fire. Selecting the time will not do anything yet because we have
not covered the details on BroadcastReceivers. Now press Ctrl+K | Cmd+K to invoke the
Commit Changes dialog box. Take time to confirm the changes you’ve made so far in the
Commit Changes dialog box. Note that the dialog box retains the message from your prior

commit, which you should update as shown in Figure 7-20.

158 CHAPTER 7: Introducing Git

| ## Commit Changes w

G 5 B Bl » crengerss [scheduiedReminers [o1
v M Caopp (31 aoc

v Mo C:androidBook\Reminders\app\src\main (3 files)
v [java\com\apress\gerber\reminders (2 files) (J Amend commit
M 0] ReminderAlarmReceiver.java

Before Commit

¥ & AndroidManifestxml [J Reformat code
| (] Rearrange code
(] Optimize imports
@ Perform code analysis
[¥] Check TODO (Show All) Configure
Commit Message . @ D Update copyright

New:1 Modified: 2

Adds new scheduled time picker option]

¥ Details

N o) [

Figure 7-20. Git's Commit Changes dialog box

With the RemindersActivity selected, click the Show Diff button (shown in Figure 7-20) to
bring up a side-by-side diff of all changes. Click the up- and down-arrows in the upper-left
corner or press F7 to move between earlier and later differences in the file. These controls
appear in Figure 7-21. Use the down-arrow to move to the interesting changes in your
onItemClickListener.

CHAPTER 7: Introducing Git 159

3 3 o, B | o e et e R ————— ——
e w T : . — — =)
[% 4+ Groewtsgpace [Donotignore =) Highight [epwera=| [l 7 B #- 8 B & @ rdudeins coment &
Yewt version i
F o CRF |
. AlertDiales.Builder builder = new AlersDisloy, Bild thia] s 5 (5 Duilder builder = new AlertDialog.Bui thia] 7
T ListView - pew ! ‘this) s 9 96 ListView - new i ‘this) : . |
String[] modes = mew String(] ["Bdit Reminder®, "Delete Reminder”, "Schedule Reminder" 82 7 String[] modes = mew Strimg(] ["Edit Reminder®, “"Delete Reminder”, "Schedule Femis’
- new this, 9 a8 - mew this,
android.R. layout.sisple_list_ites 1, android.R.id.textl, modes)s £} 53 android.R.layout.sisple list item 1, android.R.id.teetl, modes);
modelistView. setAdapter (modehdaprer) ; 95 100 modelistView. setAdapter (modehdaprer) !
buflder. setView (modelistView) 9 101 builder. setView (modelistView)
fimal Dialeg dialeg = builder.create(): 9 102 fimal Dialeg dialeg = builder.create()!
f dialog. show) : se| (103 dialog. shew() :
(medelistView. fekLiseser new WLiscener() | I 104 modelistView. serielvesClickl [new Rdap ¥Lisrener o
#0overzide 100 B Tide
jublic void calvesClick (AdaptecViewcrs pasest, View view, int position, losg id) { | (101 public veid celtesClick (AdapresViewc?> parest, View view, st pesivien, loeg it
edit resinder 103 int nld = get :
A7 (poaiticn == 0) | | o3l | fisal Ramisder reminder = sSbAdapter. fatchheminderByld (ad) :
int old = ; B, |2 edit =
Besicder remicdes = 108
fizeCustanDialog (remiades) 106
delete remis 107 i celet dar
} else if (position == 1) | 108 13 } else Af (positicm == 1) {
|} 10% 4 L) ol 1
fetchal | H 110 115 feschal 1
} else | 111 116 | else |
Date today = mew Date(}; | I (O O) | final Date today = new Date{}:
new TimeFickerDialog{Remindershctivity.this,mall, today.getSours (], today. get 113} 11e X TimePickerfialog.OnTimeSetlistener listener = new TimeFicikerDialog.OnT:
} 114 119 #override
dialog.dismiss{}; 115 12080 public vodd onTimeSec (IimePicier timeFicker, int hour, imt minute)
1 11€| | [121) Date alars = pew Dase(coday.geciess(), roday.gesMenth(), Todsy
1 117 122 gecTime(), de. :
118 123]
11% 14 | H
actian sode set-gp 120 125 new TimePickerDialeg(Remindershorivity. this, sall, todsy. gesleass (], vode)
IICH.SDK_INT >= Build.VERSION CODES.BONEYCOMB) | }
CHOICE_MODE_MULTIFLE_MOCAL): dialog.dississ ()
(Bew AbalistView. Ruls iszazer() [1
Tide i
| Commit Message .Ef
iAdds new scheduled time picker option.
3 dflesences | Deleted Chunged | Inserted

Figure 7-21. Visual text diff view

So far, you have managed to include an OnTimeSetListener, which is not currently being
used. (The light gray coloring of the 1istener variable indicates that it is not used in code.)
As you move through your code in this view, you are reminded not only of changes you have
already made, but also of changes you may have missed, which gives you another chance at
fixing problems prior to committing. The diff view is also an editor with some syntax-aware
features. Should you choose to make minor tweaks, you can take advantage of things such
as auto-complete.

Press the Escape key to dismiss the diff view, and change your commit message prior to
committing the changes. Click Commit to allow Android Studio the chance to perform code
analysis. You will see another dialog box telling you that some of the files contain problems.
The dialog box will hint that there are warnings in the code. At this point, you can click the
Review button to cancel the commit and generate a list of all potential issues. Although it is
not good practice to ignore warnings, you can intentionally leave these for now and proceed
with the next step.

Git Commits and Branches

The Git style of commits on branches is similar but may feel somewhat different from what
you are used to if you come from a traditional VCS background using tools like Perforce or
Subversion. You’ll want to understand the subtle differences in how Git manages commits
and branches. These differences can confuse new-comers, but they are the core of what
gives Git its power and flexibility.

160 CHAPTER 7: Introducing Git

Commits in Git are treated as first-class entities in the history of a project, which are
identifiable by a special commit hash code. While you don’t need to understand the
specifics of how Git implements individual commits and versioning, it is important to think
of commits as objects or entities that exist within a history timeline that represents the entire
state of the repository. A commit exists as an atomic unit of work that has occurred at one
point in Git history, which is annotated with a commit message describing the work. Each
commit has a parent of one or more commits that precede it. You can think of branches
as labels that point to an individual commit in history. When you create a branch, a label
is created at that point in the history, and as you make commits to that branch, the label
follows the history of commits. The following diagrams, starting with Figure 7-22, illustrate
the Reminders project history as it is currently seen by Git.

A < master I

*Scheduled
Reminders

Figure 7-22. Git history showing ScheduledReminders branch

Note Android Studio commit logs progress from bottom to top, whereas our diagrams progress
from top to bottom.

The master branch is represented by the grey arrow pointing to the last commit A from the
cloned project. (Comparing with the Git log view, you will note that there are other commits
proceeding A, but they are left off for brevity.) The ScheduledReminders branch is the green
arrow pointing to the latest in your series of commits B and C implementing the new feature.
We use single letters as labels for simplicity, but Git uses commit hash codes, which include
much longer hexidecimal names such as c04ee425eb5068e95c1e5758f6b36c6bb9616938. You
can refer to a particular commit by using only the first few characters of its hash so long as
they are unique or not similar to the first few letters of any other hash.

CHAPTER 7: Introducing Git 161

Where is Revert?

One of the big hang-ups people have when they try Git for the first time is adjusting to Git
reverts, because they do not work the way other VCS clients work. A Git revert is a commit
(unit of work) that unwinds an earlier commit. The best way to understand is to see it in
action. Let’s make a change that fixes your deprecation warnings in RemindersActivity.
java. Introduce the Calendar object and remove the Date object, as shown in Figure 7-23.

@0verride

public void onltemClick (AdapterView<?> parent, View view, int position, long id)| {

int nId = gecIdFromPosition(mascerlLiscPoaition);
final Reminder reminder = mDbAdapter.fetchReminderById(nlId):

fireCustomDialog (reminder) ;

else if (position == 1) {
mDbAdapter.deleteReminderById (getIdFromPosition (masterListPosition));
mCursorAdapter.changeCursor (mDbAdapter.fetchAllReminders());

else |

public void onTimeSet (TimePicker timePicker, int hour, int minute) {
final Calendar alarmTime = Calendar.getInstance():
alarmTime.set (Calendar.HOUR, hour):
alarmTime.set (Calendar.MINUTE, minute): |
scheduleReminder (alarmTime.getTimeInMillis(), reminder.getContent()):

}
}:
final Calendar today = Calendar.getInst (:
new TimePickerDialog(RemindersActivity.this,null, today.get (Calendar.HOUR) , today.get (Calendar.MINUTE) , false) . show() ;
}
dialog.dismiss();

}

Figure 7-23. Fix the deprecation warnings

Build and run the code to verify that it works, and then commit this change with the
message Fixes deprecation warnings. Note there will still be a warning for the unused
variable, addressed later in the “Resolving Conflicts While Rebasing” section. The revert
command in Android Studio is much different than the Git revert command. Here you will
work with the command-line git revert command to understand the difference. Find the
“Fixes deprecation warnings.” commit in the Git history of the Changes tool window, right
click it and choose copy hash to copy the commit hash code to your system clipboard. Now
open the terminal by clicking the terminal window button along the bottom margin and enter
git revert and paste the commit hash as the last part of the command. Your command
should look like Figure 7-24. Press enter and Git will launch a commit message edit session
in your terminal as shown in Figure 7-25. Type “:q” to quit the edit session which saves the
default commit message and performs the commit.

162 CHAPTER 7: Introducing Git

Terminal

X C:\androidBook\Reminders>git revert di3g97ed 155e1Eba 48e637e23175¢

Figure 7-24. Issuing the git revert command from the terminal

Terminal

This reverts commit d33897ed€c9al55elfbaSb88Saa4fe637e23175f.

Please ent

Changes to be committed:
modified: app/src/main/java/com/apress/gerber/reminders/RemindersActivity.java

Untracked files:
§ .gradle/

.idea/workspace.xml

Figure 7-25. Commit message edit. Exit by typing :q.

A git revert causes a new commit is performed that unwinds the prior commit. Switch
back to Android Studio and see what has changed. All of the deprecation warnings have
returned with the unwound change. Your Git history will reflect the commit. Git applies

a reversal of all the changes from the prior commit and immediately performs a commit
with these changes and presents an identical message from the last commit prefixed with
Revert. Contrast this with other tools that track your local modifications to files and allow
you to undo the modifications prior to committing. Even though this new style of backing

CHAPTER 7: Introducing Git 163

out changes is different, Android Studio gives you an interface for doing a revert that is
consistent with classic, more familiar version control tools. At the time of this writing, there
is no IDE command or menu action that triggers the equivalent of a Git revert. However, a
built-in option allows you to locally apply a reversed change from local history, Git history,
or even a patch file. A Git revert automates the two steps of applying the reversed change
and performing the commit. Figure 7-26 illustrates the Git history, with commit D introducing
the change that fixes deprecation, and commit -D representing the unwound change that
restores the deprecated calls to the Date object.

A < master

*Scheduled
Reminders

O~~~

Figure 7-26. Git history after revert

The other way to unwind a committed change is to use the reset command, which works like
revert but has a subtle difference. Add the changes from Figure 7-23 back into the source
and commit them again. Your Git history will then have an extra E commit following the -D,
as shown in Figure 7-27. This time Choose VCS » Git » Reset Head. Enter HEAD~1 in the
pop-up dialog box, as shown in Figure 7-28, and click Reset.

164 CHAPTER 7: Introducing Git

©
I

*Scheduled
Reminders

0000

Figure 7-27. Git history after reapplying the deprecation fix

Reset Head -
Git Root: | C:\androidBook\Reminders n
Current Branch: ScheduledReminders
Reset T v

| eere |

To Commit: | I | Validate
=3

Figure 7-28. The Git Reset Head dialog box

Git will sync your repository to the commit prior to your last commit, which is the equivalent
of an undo for that commit—making your history look as it did in Figure 7-26. Android Studio
enhances the Git reset by reapplying your changes using your current changelist. This gives
you a second opportunity to reclaim a commit in the case where you accidentally perform a
reset. In most cases you will want to completely discard the changes after a reset. Click the
revert changes button in the changes tool window to completely discard the changes. The
revert changes button is circled in Figure 7-29.

CHAPTER 7: Introducing Git 165

LLLL] IMEAE LA P, (A SRS . RRATE T

Changes: |51/ Shelf | Log

¥ ScheduledReminders (1 file)

(8] RemindersActivity.java

57 Default (No files
@ 3
il

Figure 7-29. Click the revert changes button

Let’s reset even further to remove all traces of your work on the deprecated method calls.
Choose VCS » Git » Reset Head. Then enter HEAD~2 in the pop-up dialog box, shown in
Figure 7-28, and click Reset. Remember to click the revert changes button afterwards. This
will become a habit each time you use Git Reset in Android Studio. Your history will then
reflect that of Figure 7-22.

REVERT VS. RESET

The difference between revert and reset is subtle but important. A revert adds a commit that inverts the
changes from the last commit, whereas reset takes a commit away. A reset essentially backs your branch
label up by a given number of commits. If you’ve accidentally committed something, you’ll often want to undo
or delete a commit. It is reasonable to use reset in such cases, because it is the simplest option and does not
add to your history. In some cases, however, you might want your history to reflect the work of unwinding a
commit—for example, if you pull a feature from a project and want to document the removal of that feature to
the user community. Another important use for revert comes with remote repositories, which we discuss later
in this chapter. Because you can only add commits to remote repositories, the only way to remove or unwind a
commit on a remote repository is to use a revert, which appends the inverted changes as a commit.

Merging

Merging is a means of combining work from two separate branches. Historically, merges
have required extra effort because of conflicts between branches. Thanks to Git’s
implementation of changes, merges have become less painful.

You’'ll start by adding a new feature on the main branch for the extreme procrastinator.

This new feature will set the default of all reminders to Important because we know you
procrastinators will ignore anything other than the most important reminders. Click File »
VCS » Git » Branches to bring up a list of branches. Select the master branch and then
select Checkout. Note that the underlying source has been changed, all of the changes to
support the new feature have been removed, and your project has been restored to its state
before you began working on scheduled reminders. Create a new changelist entitled and set
it to active. Remove the empty ScheduledReminders changelist when you are prompted to
do so. Figures 7-30 and 7-31 demonstrate this flow.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

166

CHAPTER 7: Introducing Git

) New Changelist 1 I IS —

MName: ImportantReminders

Comment: For the extreme procrastinators!

E Make this changelist active [Track context

Figure 7-30. New changelist dialog box

Confirmation -

| ®| The empty changelist 'ScheduledReminders' is no longer active.
= Do you want to remove it?

O Remember my choice I

Figure 7-31. A confirmation dialog box appears when deleting the old changelist

Look in the fireCustomDialog() method and find the line that retrieves the check box from
the dialog box layout. Add a new line to call checkBox.setChecked(true), which will set the
new default, as shown on line 200 in Figure 7-32.

196
197
198!
199
200!
201!

TextView textView = (TextView) dialog.findViewById(R.id.custom title):

final EditText editCustom = (EditText) diai.aq.findViewById(R.id.custcm_edit_reminder};
Button buttonCustom = (Button) dialog.findViewById(R.id.custom button commit);

final CheckBox checkBox = (CheckBox) dialog.findViewById(R.id.custom check box):
checkBox.setChecked(true); //All reminders are important!

LinearLayout linearLayout = (LinearLayout) dialeg.findViewById(R.id.custom root layout):

Figure 7-32. Set the check box default to checked

Build and run the app to test the new feature and then commit using Ctrl+K | Cmd+K. Git will
see the history documented in Figure 7-33, which represents your latest commit that follows
your initial clone from the branch.

CHAPTER 7: Introducing Git 167

Scheduled
Reminders

Figure 7-33. Commit history after adding a feature to the master branch

Here you switched your HEAD to master and made a D commit. This latest commit follows a
different historic path than the commits for the ScheduledReminders feature, as this commit
is not on the same branch.

Note If you are following the history in Git log view, you will note there is another origin/master
branch pointing to the A commit that we do not show. This is a remote branch that is discussed later.

You have done some work on the master branch, and made a few commits to add a new
feature on your ScheduledReminders branch, so now you will bring these changes together
into the main line, or master branch, where others can see them. Click File » VCS » Git »
Branches again to bring up a list of branches. Select the ScheduledReminders branch and
click Merge. All of the changes and history from that branch will be incorporated into your
master branch. Build and run the app to test both features. Clicking New Reminder from the
options menu will open a New Reminder dialog box with the Important check box selected,
while clicking any reminder in the list gives the option to schedule the reminder for a certain
time. Figure 7-34 illustrates how Git has managed your changes.

168 CHAPTER 7: Introducing Git

Scheduled
Reminders

Figure 7-34. Commit history after merging the ScheduledReminders feature

A new E commit was automatically performed that includes changes from both C and D
(E’s parents). Also note that HEAD is pointing to the head of the master branch which
includes the latest commit.

Git Reset Changes History

What if you wanted to treat your important reminders feature as a branch? You never created

a branch for this feature. Instead you developed right on top of the master branch. You could

force your master branch to back up and point to your D commit so let’s do this now. Click File
» VCS » Git and click Reset Head. The To Commit field will be set to HEAD. Set it to HEAD~1
and click the Reset button as shown in Figure 7-35 to reset your master branch again, which is
more like a label. Remember to revert the changes saved from the Git reset. It will then point to
the prior commit. Git will now see the repository as outlined in the prior diagram in Figure 7-33.

(& Reset Head —_—

Git Root: | C\Android\book\reminders u

Current Branch: master

Reset ype:
ToCommit: | HEAD~1 | | veiid

Figure 7-35. Git reset dialog box

Since the last commit included the merged changes, the reset makes it such that the
merge never happened and you are now sitting on top of the commit, which introduced
the ImportantReminders feature. This leaves you free to change history and make it look
as if this new feature was developed on a branch. Click File » VCS » Git and then click

CHAPTER 7: Introducing Git 169

Branches to open the branches dialog box. Click New Branch. Give the branch the name
ImportantReminders and click OK to create it. You now have the history depicted in
Figure 7-36.

L/

Scheduled
Reminders

Figure 7-36. Git history showing the new branch

Both master and ImportantReminders branches are pointing to the same commit. Check
out the master branch using the Branches dialog box which can be invoked by clicking the
branches section along the right corner of the status bar or by selecting File » VCS » Git
» Branches. Reset this branch one more time to point it to where you initially cloned the
project from Bitbucket and then check out the ImportantReminders branch. The history is
now reflecting two experimental feature branches still in development while the working
copy (what you see in the IDE) reflects the project as it existed when you first cloned it. You
can see this in Figure 7-37.

Scheduled
Reminders

Figure 7-37. Git history after resetting master to the beginning

Now you want to further change history and reorder your feature commits so that they
look like they were developed in series and no branches were used during development.
Before you do this, check out the master branch and merge it with the ImportantReminders

170 CHAPTER 7: Introducing Git

branch. The merge will result in a special Fast Forward operation: Git merely moves the
master branch forward in history to the same commit shared by the ImportantReminders
branch. This is different from the earlier merged branch example, because one branch is a
descendant of the other. If you look close enough, you will notice that creating a commit that
merges changes from the ImportantReminders branch onto the master would be identical

to the D commit already pointed to by this same branch. Consequently, Git optimizes the
operation and just moves the master branch forward, which brings you back to the history
similar to that illustrated in Figure 7-36. The difference is that you have master checked out
instead of the ImportantReminders branch.

Now you’ll make your history more interesting. You will add an About dialog box to your app
S0 your users know a little more about the developer. An About dialog box is also a good
place to put attributions for technologies and artwork used. Yours will be relatively simple.
Delete the ImportantReminders changelist if you haven’t done so and work with a new
changelist titled AboutScreen. Create a new resource XML file under app » src » main »
res » layout named dialog_about.xml and fill it with the code in Listing 7-1.

Listing 7-1. dialog_about.xml|

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent" android:layout_height="match_parent">

<TextView
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearancelLarge"”
android:text="Reminders!"
android:id="@+id/textView2"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceMedium”
android:text="Version 1.0\nAll rights reserved\nDeveloped by yours truly!"
android:id="@+id/textView3"
android:layout_marginTop="34dp"
android:layout_below="@+id/imageView"
android:layout_centerHorizontal="true"
android:gravity="center" />

<ImageView
android:layout_width="wrap_content"”
android:layout_height="wrap_content"

CHAPTER 7: Introducing Git 1

android:id="@+id/imageView"

android:layout_below="@+id/textView2"

android:layout_centerHorizontal="true"

android:src="@drawable/ic_launcher" />
</Relativelayout>

This layout defines an About dialog box that contains a text view for the title, a text view for
the body, and places your Reminders launch icon in between. You need a new menu item
to trigger the dialog box. Open menu_reminders.xml and add the following XML snippet
between the first and second item tags:

<item android:id="@+id/action_about"
android:title="About"
android:orderInCategory="200"
app:showAsAction="never" />

Change the orderInCategory for the Exit menu item from 200 to 300 so it can be ordered
after the new About item.

Now open RemindersActivity.java and add a case for the new menu item that calls a new
fireAboutDialog method, as shown in Figure 7-38.

@override
public boolean cnOptionsItemSelected(Menultem item) {

switch (item.getItemlId()){

case R.id.action pew:

case android.R.id.home:
//create nev Reminder
fireCustomDialog (null) ;
return true:;

case R.id.action about:
fireAboutDialog() s
return true;

case R.id.action exit:
finish():
return true;

default:
return false;

}

private void fireAboutDialog() {
// about dialog
final Dialog dialog = new Dialog(this);
dialog.requestWindowFeature (Window. FEATURE NO TITLE);
dialog.setContentView (R.layout.dialog about);
dialog.show():

}

Figure 7-38. Add an About screen

172 CHAPTER 7: Introducing Git

The fireAboutDialog() method builds a dialog box using your new layout and shows it.
Build and run the new feature to test it. Finally, press Ctrl+K | Cmd+K and commit with
the message Adds an About screen. The Git history now has one more commit after the
important reminders feature that is now pointed to by a branch. Your latest E commit from
Figure 7-39 includes the About dialog box feature.

Reminders

%

:]_
©
§

i

Figure 7-39. Git history after adding the About screen

Git Rebase

Rebasing is a means of making a branch based on another branch or series of commits. It
is similar to a merge in that it combines changes between branches but it does so in a way
that creates a commit history without multiple parents. It’s best to use the current history as
an example. Click File » VCS » Git » Rebase to open the Rebase Branch dialog box. Tell
this dialog box that you want to rebase the master branch on to the ScheduledReminders
branch by selecting it from the Onto drop-down menu, as shown in Figure 7-40. Keep the
Interactive option selected so you can have more control on what gets combined.

]
@ Rebase branch =
Git Root: I C:\androidBook\Reminders n

Branch: | master n

|ZI Interactive |:| Preserve Merges

Onto: Irefs/heads/ScheduledRemindersi% [Validate]

Erom: | n [Validate J

|:| Show tags G Show Remote Branches

Merge Strategy: -

() Do not use merge strategies

I Cancel J l Help J

Figure 7-40. The Git Rebase branch dialog box

CHAPTER 7: Introducing Git 173

This takes you into interactive rebase mode presenting the dialog box in Figure 7-41.
Interactive rebasing is one of Git’s more powerful features. From here, you can remove and
change individual commits in your commit history. The Rebasing Commits dialog box lists all
of the commits that occur in the selected branch’s history, up to the first common ancestor
of the branch you are basing “onto”. One of the first things to note are options under the
Action column for each commit. The dialog box gives the option to pick, edit, skip, or
squash. However, Android Studio defaults each commit to pick.

_@ Rebasing CommTis

Reorder and edit rebased commits

[eones R

Figure 7-41. The Git Rebase commits dialog box

Let’ say you no longer want the ImportantReminders feature from this branch but you are
still interested in your About screen. Chose the Skip action to remove this commit from the
list, and none of those changes will be present when you finish your rebase and combine
the branches. Click the Start Rebasing option to complete the operation. Your Git history will
now look like Figure 7-42.

174 CHAPTER 7: Introducing Git

Scheduled
Reminders

Figure 7-42. After rebasing and skipping the ImportantReminders branch

Detached Head

Let’s pretend that you had another developer working on an Alarm feature when you initially
cloned the project. Let’s further say that you want to eventually merge in this work. To simulate
this, you need to move back in history to the A commit and start the new feature. Until this
point, you have been working and committing against a specific branch. This has been either
a custom-named branch or the master branch that was created upon the initial import.

We will now demonstrate an alternate way of working in Git, which is known as Detached
HEAD mode. If you check out a particular commit rather than a branch, the HEAD is
detached from whichever branch you are working under and exposed. First you need

to check out the parent commit to the ImportantReminders branch. To do this, open the
Branches dialog box and click Checkout Tag or Revision, as shown in Figure 7-43.

Git Branches M Checkot o
| & | Enter reference (branch, tag) name or commit hash
-+ New Branch [importantReminders-1]

Checkout Tag or Revision m

—— Local Branches

ImportantReminders »
ScheduledReminders »
- Remote Branches -

origin/master >

L Current branch: master
8 Gitmaster ¢ & & @

Figure 7-43. Checking out the change prior to the last change in the ImportantReminders branch

CHAPTER 7: Introducing Git 175

Enter ImportantReminders~1 in the Checkout prompt. You will now be in detached mode,
and your HEAD branch as well as your project state will reflect the last commit made when
you initially cloned the project, as shown in Figure 7-44.

©

|

Important
Reminders

o

Scheduled
Reminders

master

@0
[

Figure 7-44. git_diagram8

Note that Git now exposes a new HEAD, which is detached from any branch that was
created as part of your development. The HEAD had formally followed whichever branch you
had checked out. As you made commits, the checked-out branch would move along with
the HEAD to the latest commit. The ImportantReminders~1 text you entered was a relative
reference to where you wanted your checkout to start. You can give a relative reference to
most operations that expect a branch or commit hash. Relative references use one of the
following two formats:

BranchOrCommitHash”
BranchOrCommitHash~NumberOfStepsBack

The single-caret form takes a single step back in history from the branch or commit
specified to the left, while the tilde form takes a number of steps back in history that is equal
to the number given to the right of the tilde.

Relative References

Relative references are Git expressions that are used to refer to a specific point in Git history.
They use a starting point, or point of reference, and a target that is given as the number

of steps from the point of reference. While the reference is frequently given as HEAD, it

can also be either the name of a branch or the hash code (or abbreviated hash code) of

a specific commit. You can use relative references for tasks such as moving a branch
anywhere in your Git history, selecting a particular commit, or moving your HEAD to a
specific point in history. A relative reference can be given as a parameter anywhere a branch
name or commit hash can be given. While we’ve seen a couple of examples of using them in
the IDE, they are best used with Git on the command line.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

176 CHAPTER 7: Introducing Git

Create a new branch to begin your next feature and call it SetAlarm. Create a changelist
to go with the new branch and delete any old empty changelists. Add a new class in the
com.apress.gerber.reminders package called RemindersAlarmReceiver and fill it with the
following code:

public class ReminderAlarmReceiver extends BroadcastReceiver{
public static final String REMINDER_TEXT = "REMINDER TEXT";

@TargetApi(Build.VERSION CODES.JELLY_ BEAN)
@0verride
public void onReceive(Context context, Intent intent) {
String reminderText = intent.getStringExtra(REMINDER_TEXT);
Intent intentAction = new Intent(context, RemindersActivity.class);
PendingIntent pi = PendingIntent.getActivity(context, 0, intentAction, 0);
Notification notification = new Notification.Builder(context)
.setSmallIcon(R.drawable.ic_launcher)
.setTicker("Reminder!")
.sethWhen(new Date().getTime())
.setContentText(reminderText)
.setContentIntent(pi)
.build();
NotificationManager notificationManager = (NotificationManager)
context.getSystemService(Context.NOTIFICATION SERVICE);
notificationManager.notify(1, notification);

}

Here we have a BroadcastReceiver that expects REMINDER _TEXT given as an intent extra. It
uses the text and creates an action intent, which it uses to build a notification to post in the
notification tray. Next add the following entry in AndroidManifest.xml after the activity tag,
just before the closing application tag, to define the BroadcastReceiver:

<receiver android:name="com.apress.gerber.reminders.ReminderAlarmReceiver"/>

Press Ctrl+K | Cmd+K and commit the SetAlarm changelist with the message Adds
BroadcastReceiver for alarms. Your Git history will resemble Figure 7-45 with a third
commit hanging off your initial starting point at A.

CHAPTER 7: Introducing Git 177

Important i
€ &

Scheduled
Reminders

Figure 7-45. Git history after committing to the SetAlarm branch

This feature by itself will not do much of anything on its own. It needs to be merged with
the ScheduledReminders feature, which lives on its own branch. To wrap up your work, you
need to combine these two features and push them to your remote Bitbucket host, but you
want to do this in a way that makes it look like it was done by one person or one team on
the main branch and clean up all of your other branches. Earlier you saw how a Git merge
creates a commit with two parent commits from both branches involved in the merge. You
also learned that a Git rebase combines two branches in a linear way with a single parent
commit, which is exactly what you need. Open the Branches dialog box and check out the
master branch. Click File » VCS » Git » Rebase. Choose SetAlarm as the branch you are
basing onto and deselect the Interactive check box since you now want to include all of your
changes from the trunk. Click Start Rebasing. You should get the error pop-up shown in
Figure 7-46.

r hl
/® Rebase Suspended ﬂ

Stopped rebasing because of conflict (0/0).
Resolve conflicts and continue the rebase process.

Figure 7-46. Rebase conflict pop-up

Resolving Conflicts While Rebasing

The pop-up should not alarm you, as it points out that Git has found some conflicts. Git
marks files that it cannot automatically merge with a conflict status. It is up to you to

resolve these conflicts before the rebase can continue. Traditionally, conflict resolution has
been the bane of many collaborative efforts. It is natural to feel uncomfortable when you
encounter an error or conflict, especially during a merge. However, familiarizing yourself with
the not-so-happy path of collaboration and making merges and conflict resolution a habit,

178 CHAPTER 7: Introducing Git

increases your ability to coordinate changes across teams and individuals. Also, Android
Studio makes resolving such conflicts much less painful. Remember that you started the
BroadcastReceiver in your master branch as part of the ScheduledReminders feature. This
conflict comes as a result of code in two branches containing similar or identical changes.
Find the conflict in the Changes view by looking for the files highlighted in red, as shown in
Figure 7-47.

Changes: sheff | Log
gﬁ E v Default (3 files)
‘:,E % @ AndroidManifest.ml (C:\androidBook\Reminders\app'\srcimain) k
fil ReminderAlarmReceiver.java (C:\androidBook\Reminders\app\src\main\java\com\apress\gerber\reminders)
5 © m RemindersActivity.java (C:\androidBook\Reminders\app\src\main\java\com\apress\gerber\reminders)
+ O

Figure 7-47. Merge conflicts in the Changes view

Right-click and choose Git » Resolve Conflicts from the context menu, as shown in

Figure 7-48. This will launch the Files Merged with Conflicts dialog box. Resolving confllicts
traditionally consists of two parties offering two sources of input; your local changes or
yours, and their incoming changes or theirs.

Changes: Shelf | Log |

95 E ¥ Default (3 files)
ves X % AndroidManifestxml (C:\androidBook\Reminders\app\src\main) Commit File...
* T 0] Remindemlarmﬂeceivtr.j":& (CAandrmidRaol Reminderc annlcrelm + Add Ctrl+Alt+A
5 E [f] RemindersActivityjava (C * Commit Changes... Annotate
+ M S Revert... o
o : Show Current Revision
ove er Chang " . o
W' Move to Another Changelist | o
— pd f (i Compare with the Same Repository Version
il Show Diff Ctrl+D . : -
M 8= Compare with Latest Repository Version
Jump to Source F4 :
“'j Compare with...
s X Delete Compare with Branch...
[EE] H
Create Patch... E” Show History
Shelve Changes... Show History for Selection
(D Refresh Ctrl+F5 | 4 Revert...
Local History _ Resohve Conflics. |
Git Repository 4

Figure 7-48. Select the Resolve Conflicts option

The Android Studio Files Merged with Conflicts dialog box shown in Figure 7-49 is a
powerful merge tool for performing three-way file merges and resolving text conflicts. It
borrows yours vs. theirs terminology from the traditional merge scenario as it guides you
through the merge. The merge tool considers the SetAlarm branch you are rebasing onto
as theirs, or the incoming server changes. The master branch you are rebasing from is
considered yours, or the local working copy. The Files Merged with Conflicts dialog box
starts with a dialog box that allows you to Accept Yours, Accept Theirs, or Merge. The
Accept Yours option totally ignores the incoming server file update from the branch you are
rebasing onto in favor of the changes from the local working copy branch you are rebasing

CHAPTER 7: Introducing Git 179

from and marks the file as resolved. The Accept Theirs option completely replaces your
current branch’s local working copy with the incoming server file updates from the branch
you are rebasing onto while marking the file as resolved. The Merge option takes you into
the three-way merge editor, where you can pull in individual line changes from the incoming
server and working copies into the base merge copy while custom merging only the things
you need. The base merge copy is the output, or result, of the merge.

 Files Merged with Conflicts

Name | Type | Yours | Theirs | _
— Accept Yours
= AndroidManifestxml (C:\androidBook Text Modified Modified Pty

IglﬂemmdElAFarmF!ecer.-'er,Ja\-ra {l‘_:'-._andrc Medified Modified Accept Theirs

dil

Figure 7-49. Merge the ReminderAlarmReceiver

Click the Merge button to see how this works. The merge editor shown in Figure 7-50 opens.

180 CHAPTER 7: Introducing Git

B",.. - - o = . - - - N n
RN T A EX |

Le<al Changes Merge Result = Servet [Fevition
package com.spress.gerber.reminders; package com.apress.gerber.remindera; package com.apress.gerber. remindera; |

1
¢ |

3 X lmport andzeid.amnotation. Targethpls |
f import. android.app.Notifications

s import android.app.NotificationMansgers
€ Amport. androtd. app. Fendinglntent:

1

| 12

~ impart andreid, cestent BreadsastReceiver: x® 3
4

)

3

import android, content.Context;
®® &)
x®| 7 ‘\l\ 1

1

2

3 }_sgsgg_c rets,

4

import android.content.Intent: 5

= s
xwo\l)| o

7 Amport androdd. comtent
& smport andzedd, coe

L] import android,conten
10 import android.cs.Bui

smport, android.son
£t _android.con

public class ReminderAlarsfeceiver extends Broadcast 11 | el
public static final String FEMINDER TEXT = “HEML iz Wizl

12 dAmport jave.oril.Dacer

Boverzide 14
public void cofeceive|Context coatext, Intent in 18

I L

[18] o 18 peblic class RemizderAlarsReceiver extends Broadcast
19 19 pablic class ReminderhlarsReceiver extands frcadcasthe: 1% public static final String REMINDER TEXT = “REMT

20 Public static fimal String REMINDER TIXT = “REMINDI 20
2 2 Targetapd (Build, VERSION_CODES.JELLY_BEAN)
22 ey VERSICR_CODES. JELLY_BERN) 2 Boverside
23 #aves b2 public void cofeceive(Context convexr, Intest in
2 pablic void (Eoncext comtest, £ Sering = intent.gpecs:
L ing reminderText = imtent.ge 2 Intent intentAction = new Intent(comtext, Re
26 . 26 pL=
4l b2 Nozification motificatice = new Notification
8 ice.; td ~perSmalllcon (R.drewable. ic_lsumcher
mh -u.kullloenll dravable.ic_Lsuncher) e «setTicker("Remindar!®)
30 «aetTicker ("Reminder! ") 20 -setihen (new Date () .getTime())
n .sethen new Date () .gecTime ()} n -secConcentText {reminderText)
LH -aetConzentText [reminderTenc) 32 _setCemtentlntent [pi)
33 .serConzestInzest (pd) 33 -baild():
El JBudldil: M Hot noed -
b1 liotificationManager notificationManager = (Kot 1% 1 ifyil, ;
36 -notify(l, notification}s 28 1
¥] £
L1 3 }

| 3 13
40 mport android.contest.Brosdcastheceiver;

[41 import android.contest.Comtexty

l 2 changes 4 conflacts. e Deleted | Changed Inseted Conflict

S =

Figure 7-50. The Merge editor

The Merge editor lines up your working copy and the incoming copy on either side of the
Merge Result, which is the editable part of the screen. It is syntax and import aware, which
means you can use auto-complete and quick-fix and other keyboard shortcuts as you

edit the local copy. This gives you certain advantages not present in external VCS merge
tools. The editor shows both the local working copy and the incoming update, which is
marked Changes from Server. These are the changes from the SetAlarm branch that you
are rebasing onto. Along the sidebars, you'll see little double chevrons and Xs next to the
changed lines. Clicking a double chevron from either side will include that particular change
in your merge result. Clicking the X will omit that particular change. The changes are also
color coded, red for a conflict, green for additional lines, and blue for changed lines. In this
case, the majority of the file is conflicting.

Since you have only a stub of the class in your local copy on the left, it makes more sense to
accept the entirety of the complete implementation from the right incoming changes. Click
Cancel and answer Yes to the prompt asking if you want to exit without applying changes.
Click Accept Theirs in the Files Merged with Conflicts dialog box to take the entire incoming
server changes. The dialog box lines up the mainfest file next. If you click Merge, you will
see that the local working copy has the exact same modification as the incoming server
copy, so you can choose either Yours or Theirs. Click the double chevron from the local
working copy to accept your change and the X in the incoming copy pane to deny theirs.
Click Save and Finish from the prompt that pops up to complete your merge. Both files will
be marked as conflict resolved for Git. If you look in the Changes tool window, you will see
files you merged in the Default changelist. Git has paused in the middle of replaying the
series of changes onto the ScheduleAlarm branch and is waiting for you to continue.

CHAPTER 7: Introducing Git 181

Go to the main menu and find the VCS » Git » Continue Rebasing option, as shown in
Figure 7-51. Note you also have the option of either aborting the rebase or skipping this
commit while rebasing. If you were in the middle of a complicated merge and realized
something was catastrophically wrong, you could click Abort Rebasing and return everything
to the state it was in prior to starting the rebase. If you accidentally included a commit

with several conflicts, you also have the option of skipping. Click Continue Rebasing to
finish the rebase.

Create Patch... + Add Ctrl=Alt+A
Apply Patch... Annotate
Shelve Changes... Show Current Revision

Checkout iom Version Contol > i Compare with the Same Repository Version

Compare with Latest Repository Version

Import into Version Control »
Browse VCS Repository » Compare with..
<intent-filter> Compare with Branch...

<action android:name="and @ Show History
Show History for Selection

© Revert...

Resolve Conflicts...

app\src\main\java\com\apress\gerber\reminders\ap
Branches...

Tag Files...

[Merge Changes...
Stash Changes...
UnStash Changes...

'S Push... Ctrl+Shift+K

Rebase...
Abort Rebasing

Continue Rebasing

Skip Commit in Rebasing

Figure 7-51. Click the Continue Rebasing menu option

The rebase will complete, and a new commit is performed. The Git history will reflect a copy
of all the changes from the master following the SetAlarm commit in the timeline. This is
shown in Figure 7-52.

182 CHAPTER 7: Introducing Git

©

fov

0

Scheduled
Reminders

O-O-O-O

[

Figure 7-52. Git history after rebasing and fixing conflicts

The master contains commits B and C, supporting ScheduledReminders; commit E, which
added the About screen; and commit F from the SetAlarm branch. You also decided you no
longer want the ImportantReminders feature with your earlier rebase.

The task of setting the alarm and implementing the actual BroadcastReceiver was done on
a separate branch but it now looks like a tag, or milestone, in your timeline. To complete
your feature, you need to tie your work from the ScheduleReminders branch to the actual
BroadcastReceiver in the SetAlarm branch. Make the following change to connect the
listener that invokes the BroadcastReceiver to the TimePickerDialog. You will insert the
following code snippet at the end of the else block just before the dialog that we use for Edit
Reminder.

new TimePickerDialog(RemindersActivity.this,listener,today.getHours(),today.
getMinutes(),false).show();

Run your project on a device and verify that the feature works. You should now get device
notifications when you schedule reminders, as shown in Figure 7-53.

CHAPTER 7: Introducing Git 183

] :] 7 SAT, APRIL 4

u Buy Learn Android S

Debugging over Bluetooth

USB debugging connected
To

lebugging

Voice and data roaming

Wi-Fi

Connected to "xfinitywifi"

Connected as a media device
To

62° - Sunny

Figure 7-53. Notification from a reminder

You can now push your master branch to the remote Bitbucket host. From the File menu,
choose VCS » Git » Push. The dialog box in Figure 7-54 opens, giving you the ability to
push changes from your local master branch to the remote master branch of your Bitbucket
repository. Click the Push button to perform the push.

184 CHAPTER 7: Introducing Git

[hl
M Git Push -
¥ master -> origin/master & . T =
Adds an About screen.
[hdcsanaboutsaeen, S .

introduces an OnTimeSetListener. = = = :
7) i v [C\androidBook\Reminders\app\src\main (3 files)
Adds new scheduled time picker option.

v [java\com\apress\gerber\reminders (1 fils
0] RemindersActivity.java
v [res (2 files)
v 3 layout (1 file)

[= -
¥ dialog_about.xml

Adds BroadcastReceiver for alarms

f v [menu (1 file)

[.
= menu_reminders.xml

¥

[] Push current branch to alternative branch: I J | master [(%)

EEN [e] [e |

Figure 7-54. Push your changes to Bitbucket

Since you are done with the ScheduledReminders and ImportantReminders branches, they
can be deleted. Open the Branches dialog box and select both of these branches in turn;
click Delete to remove them.

Git Remotes

Git remotes are merely copies of a Git repository stored on a remote server and accessible
over a network. While you can use them similarly to a traditional client/server-modeled VCS
like Subversion, it is better to think of them as publicly accessible copies of your work. You
don’t commit to a shared central server in the Git workflow; instead you share your work via
pull requests.

The pull request is a request from one developer to pull in changes from a public repository
under that developer’s profile. Others are free to include individual commits or your

entire work at their discretion. You will usually find a main branch, with one or more lead
developers responsible for keeping that branch up-to-date with the latest and most valuable
features and commits. The leads pull in changes from various contributors by using the
entire feature set of Git, which allows the selection, removal, reordering, merging, squashing,
and amending of individual commits.

CHAPTER 7: Introducing Git 185

However, pull requests are for advanced Git users. The most common way people begin
with Git is by cloning a project from a Git hosting server—downloading an entire copy of the
Git repository to work with locally. You continue to make changes and commit them locally,
and then finally push these changes back to the remote repository. You can also fetch and
merge changes that were pushed by others up to the remote.

Another option is to start with an empty repository locally and build a project. You then push
the project to a Git hosting service such as Bitbucket or GitHub and advertise it to be shared
with others, or you can make it private and invite others at your discretion. Development
continues as in the common approach, with local commits that you push to the remote.
Eventually, contributors fork and add to their remote copies of the project over time as you
work, and you will fetch and merge these changes.

Pull vs. Push Model

Traditional VCS systems rely on a push model whereby features are worked on by several
developers and eventually pushed up to a central server. While this model has worked for
years, it is subject to the limitations of a single copy of the master branch becoming corrupt
as contributors attempt to merge their changes by using diffs and patch files. Patch files are
textual representations of the individual actions taken to change source files; for example,
indicating to add these lines, remove those lines, or change this line. Most VCS systems that
follow this model manage changes as a series of diffs applied over time.

Git follows a distributed pull model treating a project as a shared entity. Because Git allows
distributed copies of the master branch, any individual is allowed to commit and update a
local copy at any time, which reduces the complexity involved with merging work between
contributors. Git also elevates the significance of individual commits, treating them as
snapshots of your repository over time. This leaves the tool better adept at managing
changes. It also adds the flexibility of managing multiple changes to an individual source
file separately. Merges are much more precise and manageable, and the complexity of
combining work is dramatically reduced. For example, a project lead could pull a feature that
you’ve implemented in 10 or so commits spread between multiple branches, squash them
all into one, amend the message, and organize it in that lead’s personal history before other
commits in the master branch, and finally push and publicize it on the remote associated
with the project.

Summary

This covers the basics of using Git with Android Studio. In this chapter, you’ve seen how

to install Git and use it to track changes. We demonstrated how to add your source to Git
and used the Git log feature to see a summary of your commit history. You’ve seen in-depth
examples of how branches work like labels pointing to individual commits. The branches
can be moved between commits by using relative references or even deleted entirely. We’ve
demonstrated how Git history can modify changes that were committed in parallel and line
them up serially. We demonstrated a few collaborative scenarios involving multiple branches
maturing simultaneously.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

Chapter

Designing Layouts

Getting the most out of your app often means giving it the right visual appeal to delight your
target audience. While Android makes it trivial to get up and running with one of its various
template projects, sometimes you will likely need more control over the look and feel of your
application. Maybe you want to tweak the placement of a radio button sitting next to another
control, or maybe you need to create your own custom controls. This chapter covers the
basics of designing layouts and organizing your controls so they appear correctly across the
myriad of Android devices available.

Android layout designs are based on three core Android classes, Views, ViewGroups, and
Activities. These are your base building blocks when it comes to painting the screen.
While the user-interface packages have many more classes, most of them subclass, utilize,
or are components of these core classes. One other important component, fragment, was
introduced in Android 3.0 Honeycomb (API 11). Fragments address a critical need to design
modular sections of the user interface that allow reuse across many form factors, particularly
tablets. This chapter begins with the core user-interface classes and then continues with
fragments in a later section.

Activities

An Android activity represents a screen with which a user can interact. The Activity class
itself does not draw anything; rather it is the root container responsible for orchestrating
every component that does get drawn. Any component that is drawn to the screen lives
within the bounds of an activity. The Activity class is also used to respond to user input.

An activity can transition to another activity as the user navigates between screens. Activities
have a well-understood life cycle, which is detailed in Table 8-1. We refer to the activity
lifecycle later in this chapter.

187

188 CHAPTER 8: Designing Layouts

Table 8-1. Activity Life-Cycle Methods

Method Description Kill After Next

onCreate() This is called on initial creation of the activity. It is No onStart()
responsible for constructing views, binding data to
controls, and managing or restoring state from its given
bundle.

onRestart() This method is invoked after the activity has been No onStart()
stopped, right before starting up again. This happens in
cases such as resuming after a phone call or bringing
the app back to the foreground.

onStart() This method is called immediately before the activity No onResume ()
shows onscreen. It is followed by a call to onResume() or
if the activity is brought to the foreground or a call to onStop()

onStop() if the activity is hidden.

onResume() The onResume () method fires when the activity has been ~ No onPause()
created, started, and is ready to receive user input. The
activity will be running after this method completes.

onPause() This method is triggered whenever the system is ready Yes onStop()
to resume an activity. It can be called while the current or
activity is executing, as the system prepares to transition onResume()

to another activity, or it can be called while the current
activity is interrupted and sent to the background.

onStop() This method is called when the activity is not visible. Yes onRestart()
or
onDestroy()

onDestroy() The activity gets this call right before it is destroyed. Itis Yes N/A

usually the result of an explicit call to finish() from within
the activity or a case where the WatchDog needs to kill the
activity either to reclaim memory or because it has become
unresponsive. This is the last call the activity will receive.

Views and ViewGroups

Although an activity is the root component, it usually contains a collection of several View
and ViewGroup objects. View is the superclass of any and all visible elements on the screen,
including view-group. These are elements such as buttons, text fields, text-input controls,
check boxes, and so on. A view is usually contained in one or more view-groups. A view-
group represents a collection of one or more view objects. A view group can be nested
within other view-groups n-deep to create complex layouts. The primary responsibility

of a view-group is to control the layout of one or more nested View or ViewGroup objects.
Various types of specialized view-groups control how their child components are positioned.

CHAPTER 8: Designing Layouts 189

These are layout container objects. Each layout object behaves differently and uses unique
positional properties. LinearLayout, Relativelayout, FramelLayout, TablelLayout, and
GridLayout are the core layout containers.

To best understand how individual layouts work, let’s go through a few examples. Start a
new project called SimpleLayouts using the New Project Wizard. Select a Phone and Tablet
form factor targeting a minimum of API 14 (IceCreamSandwich) and use the Blank Activity
template. Keep the default activity name MainActivity, and the activity main.xml name for
the Layout Name field, then proceed to create the project. You should drop into edit mode
for the main activity’s layout, as shown in Figure 8-1.

SimpleLayouts - [? - [appl - ~\ap , msin el - Android Studio 10.1 [ESRCE <]
Ele [d® Yiew livigate Code Ambge Befactoe Quld Ry ook VCS Wdow Help) B |
OWo X0Oa b ¥ (Fwmr /b L ¥@ PLES 7 o

[Smpletayouts Ciapp Clsrc | Cmain [| 5 layout | 5 actiity, mainami
D | B I € ManActiviyjava X | S activity_mainamd <

m
Paleite B 1 L Bnewsd- (- Bappmeme T Manshry- @ - Compernet Tree Ixie 1§
[Layeuts H-B@ u W ® 5 B @ o DeiceScren =
Fraenelayeat (7] Relatived ayout g
: LinesLayeut (Herizentsl) e E————— @
5 Sic Linesrlayout (Verticall 4
- T — :
e - = TableRow H
» E1menu GridLayout
T Relativel ayeet £
] Widgets o
B Plain TetVrw ;
35 Lange Ten i
5 Medium Text s
Al Senall Test
Butten
Senall Buttin [— ZRSIY,
& RadicButton
o CheckBon
® Switch Lyout-height match_parent
= ToggleButten style
B imageBution sccessibilityLiveRegion
B imageview sigha
== Pregressas [Largel
== Pregressias (Notmal) i kptoussl
== Pregresiias [Small) backgroundTing
o == Pregressfias [Hotizontal) beckgroundTintMode
% & SonkBar chickable (]
f; " :::"‘s" eetemDeseription
* @ WeblView ehevation
2 1 Text Fiekds fecusable ’:
s Plain Text fecusableinTouchMode [
H Pesson Name gravity i
2 Prswerd .
> Design | Test

B Teminal o EAndroid B g Messages 21000 Eventlop [F Gradie Console M Memory Meritor
[Gradie build finished in 32 sec (2 minutes ago)

Figure 8-1. Starting with the main activity’s layout

Preview Pane

With the new project, you will start in text-editing mode for the main activity’s layout XML.

If your project is not in this mode, press Ctrl+Shift+N | Cmd+Shift+O to open the File Search
dialog and key the name activity_main to find your main layout. Android Studio supports
both text and design modes for designing layouts, and you should familiarize yourself

with both. These modes may be toggled by using the tabs at the bottom left of the Editor
window. Text mode, the default, allows you to directly edit the XML file as you would any
other source file.

A preview pane to the right of the Editor gives you a live preview of what your layout looks
like as you make changes. You can also preview how your layout will look across several
devices by selecting the Preview All Screen Sizes option under the Configuration Render

190 CHAPTER 8: Designing Layouts

menu. An identical option is available in the Virtual Device drop-down menu. Both menus are
in the upper-left corner of the preview pane. You can toggle the preview option on and off to

see how it works.

The preview pane has several controls along the top that allow you to change the way
the preview is rendered. You can render your preview in any specific device for which you
have defined an AVD. You can preview across several devices simultaneously. You can
also change the API level and theme used to render your preview. Table 8-2 describes the
annotated sections of the preview pane highlighted in Figure 8-2.

Table 8-2. Description of the Preview Pane

Section

Description

A: Preview Toggle

B: AVD Rendering

C: Ul Mode

D: Theme Control

E: Activity Association

F: Local Control
G: Android Version

This is a preview toggle. It has options to select a specific Android version
or to select all screen sizes. It may be used to quickly create a layout for a
specific screen size based on the current layout.

This menu allows you to preview your layout on a specific device. It can
also be used to toggle all screen sizes as the prior menu.

Here you find options to toggle the previewer between landscape, portrait,
and various Ul modes, as well as car, desk, and television docking modes.
It also includes appliance mode and night mode.

The Theme toggle allows you to preview your layout with a specific theme.
It defaults to AppTheme, but you can select from the various themes in the
SDK or select any theme from your project.

The Activity Association menu allows you to associate the current layout
with a particular activity.

This menu sets the preview to use a specific translation.

The API menu allows you to set the preview to a specific API level.
You can use this to see how your layout responds to various API levels.

Preview

L~ nNu&iv.'_- J,App% DM\E . IWK@

spalold uanep =3

~

3|pein

l‘l LayoutDesign

. :
2

Figure 8-2. The Preview pane in detail

CHAPTER 8: Designing Layouts 191

While in text mode, select the Relativelayout tag and change its opening and closing tag
to FrameLayout. Note how nothing changes in the preview pane, as you have changed only
the root layout tag and have not yet touched anything inside it. You will learn more about the
difference between these layouts a little later.

Select the “Hello World” text inside the nested TextView, and it will automatically expand

to “@string/hello_world”, which is a reference to text in the external strings.xml file.
Android Studio’s code-folding feature hides external string references by default. Press
Ctrl+- | Cmd+- to collapse, or fold, the attribute back into its rendered form, and press
Ctrl+= | Cmd+= to expand it to see the actual attribute value. It is considered bad practice in
Android to hard-code string values in your layouts because they are better handled as string
references. In a simple example, such as the one we’re creating here, hard-coding strings
doesn’t much matter, but a commercial app may need to be rolled out in several languages
and externalized strings make this process really easy. So, it's a good idea to get into the
habit of externalizing strings.

A reference is a special attribute value coded in your resource files that refers to an actual
value defined elsewhere. In this case, the special string “@string/hello_world” refers to a
value defined in the strings.xml resource file. Ctrl+click | Cmd+click the text to navigate to
the "Hello World" string definition, which should look like the following:

<string name="hello world">Hello world!</string>

Change the value to “Hello Android Studio!" Press Ctrl+Alt+Left Arrow | Cmd+Alt+Left
Arrow to navigate back to the layout and see the new value updated in the preview pane.
Now change the text to a random hard-coded value such as, “Goodbye, Las Vegas!”, and
the preview will update again but in this case you have overwritten the string directly. As you
change the TextView, the preview pane will update.

Width and Height

The text view is one of many views that you can add to your layout. Each view has width
and height attributes that control its size. You can set an absolute pixel value such as 250px
or use one of various relative values such as 250dp. It is best to use a relative value with the
dp suffix, because this enables the component to resize based on the pixel density of the
device on which it is rendered. The relative size is explained later, in the “Covering Various
Display Sizes” section. Change the TextView tag to a Button tag, and then change the
android:layout_width attribute to match_parent. The text view will become a button that
stretches across the entire length of the screen. Change the android:layout_height attribute
to match_parent. The button will take up the entire screen. Change the android:layout_width
attribute to wrap_content, and the button width will be narrow while still taking the entire
height of the screen. The match_parent value is a special relative value that sizes a view based
on its parent container. Figure 8-3 depicts the possible variations of using match_parent for
the width and/or height of a component. The wrap_content is the other widely used relative
value that sizes a view in a way that it wraps tightly around its content. Change the Button tag
back to a TextView tag, set its width and height to match_parent and add a couple of other
components to our layout such as Button and CheckBox, as defined in Listing 8-1.

192 CHAPTER 8: Designing Layouts

-"l Simplel ayouts |'! Smplelayouts

Goodbrye, Las Vegas!

Goodlrye, Las Vegas! Goodbye, Las Vegas!

Figure 8-3. Variations of the match_parent size value

Listing 8-1. Add More Components to the Layout

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingleft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal_margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"
tools:context=".MainActivity">

<TextView
android:text="Goodbye, Las Vegas!"
android:layout_width="wrap_content"
android:layout_height="wrap content" />
<Button
android:text="Push Me"
android:layout_width="wrap_content"
android:layout_height="wrap content" />
<CheckBox
android:text="Click Me"
android:layout_width="wrap_content"”
android:layout_height="wrap_content" />

</FramelLayout>

CHAPTER 8: Designing Layouts 193

Note how these components are all drawn on top of each other. Figure 8-4 illustrates the
problem. The behavior of FrameLayout is to stack components in the order they are defined.
Delete the extra stacked components for now so you can explore designer mode and
understand how to lay out components visually.

Preview k- A |

L+ MNexusa~ [“jv (DAppTheme ~ MainActivity= @~ FiL>

Ba @aca ogm &

r‘l SimpleLayouts

R

Figure 8-4. Widgets are stacked on top of one another

Let’s examine the FrameLayout container tag. This tag defines two attributes,
android:layout_width and android:layout_height, which both specify match_parent.

That means the frame’s width and height will match its containing parent’s width and height.
Since FrameLayout is the outermost, or root, element, it is the parent of all other components.
As such, its width and height will cover the entire visible area of the device screen.

Designer Mode

Click the Design tab at the bottom left of the Editor (shown in Figure 8-5) to bring up design
mode. In this section, you’ll explore how to use the Visual Designer to position controls.

Spinner
@ WebView
[Text Fields

Person Name

o Build Variants

Design = Text |

& Terminal . @#fAndroid @ 0: Messages 52 TODO
] GradleWeme™Rished in 3 sec (today 1:43 PM)

Figure 8-5. The designer and text view tabs

Design mode has the same live preview pane as text mode but adds a widget palette. You
can drag and drop widgets from the palette into the preview pane as you design your layout
visually. The visual designer generates the XML for you, while allowing you to focus on the
look and feel of your layout. Design mode also sports a component tree pane in the upper-right
corner as well as a properties pane below it. The component tree gives a hierarchical view
of all the view and view-group components in your current layout. At the top is the root
component, which in our example is FrameLayout.

194 CHAPTER 8: Designing Layouts

Frame Layouts

As you’ve seen, Framelayout stacks components in the order they are defined. However, it
also divides your screen into nine special sections. Click the TextView in the component tree
and press Delete to remove it. Do the same to remove the Checkbox and Button widgets
and clear the display entirely. Find the Button widget in the left-hand palette pane and
single-click it. Move your mouse around the preview pane and note the highlighted sections
that show as you mouse around. The screen is divided into areas indicated by each of the
special FrameLayout sections (see Figure 8-6). Single-click in the top-left section to drop
the button. Double-click the button and change its text to Top Left to indicate its position.
Continue dragging and dropping widgets in the other eight sections and labeling them
accordingly. As you drag and drop each button, toggle back and forth between text mode
and design mode to see how the XML is being generated for you. When you finish, you
should have something that resembles Figure 8-7. See Listing 8-2 for the code that creates
this layout.

E'.‘Sinplelayouts} Eapp> | src> | main> [z res> E Iayout> S activity_main

(€ MainActivity.java X I © activity_mainxml X ‘ © stringsxml X

ject

Palette B 1- [L- [@Nexusa~ [j» @AppTheme ™ Mai
71 Layouts @
O] Framelayout
D LinearLayout (Horizontal)
D LinearLayout (Vertical)
D TableLayout
F= TableRow
& GridLayout
RelativeLayout
[Widgets
Plain TextView
Large Text
Medium Text
Small Text
Ok Small Button
@ RadioButton
CheckBox
o Switch
= ToggleButton
HE ImageButton
_ Blimageview
Design Text I

i#® 1: Pro

: Structure

=
L

<3

Figure 8-6. Preview pane is divided into nine drop sections

CHAPTER 8: Designing Layouts

Top Left Top Center Top Right

Center Left Center Center Right

Bottom Left Bottom Center Bottom Right

Figure 8-7. Layout demonstrating FrameLayout

Listing 8-2. Code That Creates the Figure 8-7 Layout

<Framelayout
android:layout_width="fill parent"
android:layout_height="fill parent"
xmlns:android="http://schemas.android.com/apk/res/android">

<Button
android:layout_width="wrap content"
android:layout_height="wrap_content"
android:text="Center"
android:id="@+id/button”
android:layout_gravity="center" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top Left"
android:id="@+id/button2"
android:layout gravity="left|top" />

195

196 CHAPTER 8: Designing Layouts

<Button

android:
android:
android:
android:
android:

<Button

android:
android:
android:
android:
android:

<Button

android:
android:
android:
android:
android:

<Button

android:
android:
:text="Center Right"
android:
android:

android

<Button

android:
android:
android:
android:
android:

<Button

android:
android:
android:
:id="@+id/button8"
android:

android

<Button

android:
android:
android:
:id="@+id/button9"
android:

android

</FramelLayout>

layout_width="wrap_content"
layout_height="wrap_content"

text="Top Center"

id="@+id/button3"
layout_gravity="center_horizontal|top"

layout_width="wrap_content"”
layout_height="wrap_content"
text="Top Right"
id="@+id/buttons"
layout_gravity="right|top" />

layout_width="wrap_content"
layout_height="wrap content"
text="Center Left"
id="@+id/buttons"
layout_gravity="center|left" />

layout_width="wrap_content"
layout_height="wrap content"

id="@+id/button6"
layout_gravity="center|right" />

layout_width="wrap content"
layout_height="wrap_content"
text="Bottom Left"
id="@+id/button7"
layout_gravity="bottom|left" />

layout_width="wrap_content"”
layout_height="wrap_content"
text="Bottom Center"

layout_gravity="bottom|center" />

layout_width="wrap_content"
layout_height="wrap content"”
text="Bottom Right"

layout_gravity="bottom|right" />

/>

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 8: Designing Layouts 197

The designer generates this XML, which begins with a FrameLayout tag. Its width and height
are set to occupy the entire visible area of the screen. Each of the nested buttons specifies a
layout_gravity that determines which of the areas of the screen it falls into.

Linear Layouts

LinearLayout organizes its children adjacent to one another either horizontally or vertically.
Open the left-hand project pane. Find the layout folder under the res folder and right-click
it to open the context menu. Click New » XML » XML Layout File to create a new layout
resource file and name it three_button. Click and place three buttons into the preview, each
one underneath the prior button. Your layout should look like the left side of Figure 8-8. At the
top left of the preview, click the Convert Orientation button (in the second row of buttons).
The onscreen buttons will switch from being aligned vertically to being aligned horizontally,
as shown in the right image of Figure 8-8.

'=1 SimpleLayouts

New Button New Button New Button New Button

New Button

New Button

Figure 8-8. Vertical LinearLayout vs. a Horizontal LinearLayout

198 CHAPTER 8: Designing Layouts

This following XML (as seen in Listing 8-3) begins with a LinearlLayout root tag, which
specifies an orientation attribute. The orientation can be set to either vertical or horizontal.
The Button tags nested within LinearLayout are arranged from top to bottom or left to right,
depending on the orientation.

Listing 8-3. A Three-Button LinearLayout Example

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal" android:layout width="match_parent"
android:layout_height="match_parent">

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="New Button"
android:id="@+id/button1" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="New Button"
android:id="@+id/button2" />

<Button
android:layout width="wrap content"
android:layout_height="wrap_content"
android:text="New Button"
android:id="@+id/button3" />
</LinearlLayout>

Relative Layouts

Relativelayout organizes its children around one another by using relative properties. You
can create more-complicated designs when using these types of layouts, because you have
more control over where each individual subview is placed. In this example, you will pretend
to create a profile view, similar to what you would find in a social networking app.

Create a new layout XML file named relative_example and specify Relativelayout as the
root element. Drag and drop an ImageView into the upper-left corner of the preview. You will
see guidelines as you drag, and it should snap to the upper left corner. Don’t be alarmed—
this control will disappear when dropped because we haven’t given it dimensions or content.
Find the src property in the properties pane on the right side of the screen and click the
ellipses to bring up the Resources dialog box. (You may have to scroll through the properties
to find src.) Select the System tab and then select the resource named sym_def _app_icon,
as shown in Figure 8-9.

CHAPTER 8: Designing Layouts

”
¥ Resources

- e

Project | System | Color |

' stat_sys_upload
stat_sys_upload_done
stat_sys_vp_phone_call
stat_sys_vp_phone_call_on_hold
stat_sys_warning
status_bar_item_app_background
status_bar_item_background
sym_action_call
sym_action_chat
sym_action_email
sym_call_incoming
sym_call_missed
sym_call_outgoing

sym_contact_card
sym_def_app_icon
title_bar

[6] title_bar_tall
% [&] toast_frame

El zoom_plate

187 =3 =) E E E EE)E (gD () E = E @) (8

i

Kl | o

Figure 8-9. Select the sym_def_app_icon

199

The icon will render in the ImageView added to the preview pane. Click PlainTextView from
the palette and then click to the top right of the ImageView to place the PlainTextView

relative to the right of this component and aligned with the top of its parent component.

As you move the mouse around the right edge of the image, a tool tip will appear, indicating
the current drop location. Maneuver until the tool tip prompts both toRightOf=imageView and

alignParentTop, as illustrated in Figure 8-10.

£ Layouts E- =
|| Framelayout

[T] LinearLayout (Horizontal)
[LinearLayout (Vertical)
[TableLayout
4 TableRow
|| GridLayout

[RelativeLayout

71 Widgets

[Ab] Large Text

[Ab] Medium Text

|#4b] Small Text

Figure 8-10. Tool tips show as you move around the view

200 CHAPTER 8: Designing Layouts

Drag two more PlainTextView components onto the preview, line each one underneath the
prior and to the right of the ImageView. Use the guidelines to help you. Double-click the top
TextView and change its text to include a name. Change the text of the middle TextView to
include a famous city. Finally, change the text of the bottom TextView to include a web site.
As you work in the designer view, toggle back and forth to the text view to see the XML as it
is generated. You should have something similar to Figure 8-11. See Listing 8-4 for the code
behind this layout.

http://codeforfun wordpress.com

Figure 8-11. The relative layout for the profile

CHAPTER 8: Designing Layouts

Listing 8-4. The Code Behind the Layout in Figure 8-11

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent" android:layout height="match_parent">

<ImageView

android:
android:
android:
:layout_alignParentTop="true"
android:
android:
android:

android

<TextView

android:

android

<TextView

android:
android:
android:
android:
android:
android:

<TextView

android:
android:
android:
android:
android:
android:

layout_width="wrap_content"
layout_height="wrap_content"”
id="@+id/imageView"

layout_alignParentLeft="true"

layout_alignParentStart="true"
src="@android:drawable/sym_def app_icon" />

layout_width="wrap content"

:layout_height="wrap_content"”
android:
android:
android:
android:

text="Clifton Craig"
id="@+id/textView1"
layout_alignParentTop="true"
layout_toRightOf="@+id/imageView" />

layout_width="wrap_content"”
layout_height="wrap_content"
text="California"
id="@+id/textView2"
layout_below="@+id/textView1"
layout_toRightOf="@+id/imageView" />

layout_width="wrap_content"
layout_height="wrap content"
text="http://codeforfun.wordpress.com
id="@+id/textView3"
layout_below="@+id/textView2"
layout_toRightOf="@+id/imageView" />

</Relativelayout>

The generated XML includes Relativelayout as the root element. This layout contains an

ImageView with two attributes, layout_alignParentTop and layout alignParentlLeft. These
attributes keep the ImageView anchored to the top left of the layout. The layout_alignParentStart
attribute is used to support right-to-left languages without ambiguity. The ImageView also specifies

the same height and width attributes we explored earlier. Finally, it defines an src attribute that
points to a sym_def_app_icon resource, a built-in resource predefined by the Android runtime.

Each widget includes an android:id attribute with a value that starts with @+id/. These ID

201

attributes are a means of locating individual widgets during runtime. They become especially
important with Relativelayouts, as they are used to specify the position of a widget in
relation to another. Notice how the remaining TextView components use these values in the

202 CHAPTER 8: Designing Layouts

layout_below and layout_toRightOf attributes. They each specify layout_ toRightOf=@+id/
imageView, which places them directly on the right edge of the image view. The last two
TextView widgets specify a layout_below attribute that points to the TextView immediately
preceding it.

Nested Layouts

Layouts can be nested within one another to create complex designs. If you wanted to
improve the preceding profile view, you could take advantage of nesting a LinearLayout
inside your Relativelayout. This layout could include an online status label and a
description field.

Click the vertical LinearLayout in the palette and click in the preview pane just below

the ImageView to place it. Make sure the tool tip indicates alignParentLeft and
below=imageView. Click Plain TextView in the palette and then click inside the newly added
LinearlLayout to place this component. This will be your online status indicator. Next find
the Large Text widget; click it in the palette, and this time find the other new TextView in
the right-hand component tree and try clicking underneath it to place the component. As
you hover the mouse under the TextView in the LinearLayout, a thick underline drop-target
indicator will appear, as shown in Figure 8-12.

[L- Tinewss- [Tj- (Dappheme T - @~ L~ Component Tree Iz %
B oE- B2 @B g o ¥ockesmm
¥ [H] Relativelayout
B imageView - @android:drawable/sym_..i

Figure 8-12. Mouse under the TextView to see a drop-target indicator, and click to add the widget

Using the properties pane, change the text property of the first TextView to online and add
a bogus description to the text property of the TextView below it. Next click anywhere inside
the preview and press Ctrl+A | Cmd+A to select all the components. Find the layout:margin
property, expand it, and set all to 5dp to give every component a 5-pixel margin, as shown in
Figure 8-13.

CHAPTER 8: Designing Layouts 203

Android 081 — b |)

File [dt View Havigate Code Anahge Eefactor Build Ryn Tooks VO3 Window Help

DEHO #4 XD QR & ¥ Hw- b &L 8 TLES 7 Q
i Simplelayouts | Ciapp [) main | Cires [layout | 5 relative_examplesm _
§ B relstive campleam % |5 kst jtemoamd % | [soroll viewaml x | [® theee buttonami x &
E'mm -1 [L- ENenae - @apphene =« @ - Companert Tree IFIe- g
| B P HOE -5 8 @ OEHE He 2cap @ o7 8o §
W Chaonometer v D sk i
B Sonwiiy = - @andeoid: drawable/ i
g ¥ TimePickes ‘Qw .(;muw;‘« ey .u:'
5 r_u.,mm = 3t vemtView2 - “Calfoanis” i
¥ 1 Space @m-'nnpc.'.'mndndunwem_.ucng
o CheckedTextiiew v __sgwkm-mqmm.u 3
i* QuickContactBadge A_ﬁfm “Ordine”
A Eatractfdit Text (] et - “Likes iking, restt e Jova” | &
) AutoCompleteTextView H
) MultidustoC 3
1 HumberPicker
@ ZoomButton
& ZoomControls Froperties oY
+] MedisControfler =
= GestureOverlay¥iew et
[sufaceien - ayeethnigi e
] Testurevien lnyoutmargin]
s - —
ViewStub e
o Viewsnamator o
& iewlipper
g 4 ViewSwitcher Mokt
E & ImageSwitcher betier
45" TetSwitcher style
2 Ed AdapterienFlipper steeiibiltylveRegion
& [Custom sigha
41 <cinglude>
E T chciable o
@ requestFocus
7% Customiiew contentDescription
il - B
@000 & gandon 8 Tenminat W tventiog (8] Gradie Comsole

2o @

Figure 8-13. Give all widgets a 5-pixel margin

Margins control the amount of space between an edge of a component and any adjacent
component. Supplying margins for components is a good way to minimize clutter in your
interface. Although we’re setting the same margin on all sides of all components, you can
experiment with setting different margins on certain edges.

The layout:margin grouping contains settings for each of the four sides: left, top, right, and
bottom. Select all components once again and expand the layout:margin setting to find

the All option. Delete the 5dp value and instead set a value of 5dp to the left setting. The
components will be grouped tightly, but the left margin leaves just enough space between
the horizontal edges. Select the online TextView and set its top margin to 5dp to give it more
space between it and the image above. Figure 8-14 shows what the result should look like at
this point. Listing 8-5 shows the code behind this layout.

204 CHAPTER 8: Designing Layouts

sforfun.wordpress com

Likes biking, reads tech manuals and loves to
code in Java

Figure 8-14. The results of adding left and top margins

Listing 8-5. The Code for relative_example.xml

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"”
android:layout_height="match_parent">

<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/imageView"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:src="@android:drawable/sym def app_icon"
android:layout_marginlLeft="5dp" />

CHAPTER 8: Designing Layouts

<TextView

android:
android:
android:
1id="@+id/textView1"
android:
android:
android:

android

<TextView

android:
android:
android:
android:
android:
android:
android:

<TextView

android:
android:
android:
1id="@+id/textView3"
android:
android:
android:

android

layout_width="wrap_content"
layout_height="wrap_content"
text="Clifton Craig"

layout_alignParentTop="true"
layout_toRightOf="@+id/imageView"
layout_marginLeft="5dp" />

layout_width="wrap_content"
layout_height="wrap_content"
text="California"
id="@+id/textView2"
layout_below="@+id/textView1"
layout_toRightOf="@+id/imageView"
layout_marginLeft="5dp" />

layout_width="wrap_content"”
layout_height="wrap_content"
text="http://codeforfun.wordpress.com"
layout_below="@+id/textView2"
layout_toRightOf="@+id/imageView"
layout_marginleft="5dp" />

<LinearlLayout

android:
android:
android:
android:
android:
android:
android:

orientation="vertical"
layout_width="match_parent"
layout_height="match_parent"
layout_below="@+id/imageView"
layout_alignParentLeft="true"
layout_alignParentStart="true"
layout_marginLeft="5dp">

<TextView
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="0Online"
android:id="@+id/textView"
android:layout_marginLeft="5dp"
android:layout_marginTop="5dp" />

<EditText
android:layout_width="match_parent"”
android:layout_height="wrap_content"
android:id="@+id/editText"
android:text="Likes biking, reads tech manuals and loves to code in Java"
android:layout_marginlLeft="5dp" />

</Linearlayout>

</Relativelayout>

205

206 CHAPTER 8: Designing Layouts

Another way to nest layouts is to reference them indirectly with includes. Find the
LinearLayout, change its attributes to include an id attribute with the value details and
ensure that its height is set to wrap_content. Also change set the layout below attribute so
that it falls under textView3. This is shown in the following code:

<LinearlLayout
android:id="@+id/details"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@+id/textView3"
android:layout_alignParentlLeft="true"
android:layout_alignParentStart="true"
android:layout_marginLeft="5dp">

Next add the following include tag under the last TextView tag but right before the closing
LinearLayout tag:

<include layout="@layout/three button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout below="@id/details"/>

The special include tag adds any predefined layout to the current layout. In the preceding
example, you are including our earlier three-button example in the current layout. You
declare the width as match_parent, which extends the entire width of the layout, and set the
height to wrap _content. You also set the button layout to below the details component,
which is the name given to the relative layout.

Ctrl+click | Cmd+click the value of the layout attribute, @layout/three button, to navigate to
its definition. Inside the definition, you’ll change the text of each button to reflect the typical
actions available in a social networking app. Change each button’s text attribute, in order, to
Add Friend, Follow, and Message. You can do this in either text or design mode. Figure 8-15
illustrates how this looks in desigh mode.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 8: Designing Layouts

ADD FRIEND “ FOLLOW

Figure 8-15. Add labels to the buttons

When you are finished, navigate back to relative_example.xml to see the integrated
buttons. Figure 8-16 shows the completed result.

207

208 CHAPTER 8: Designing Layouts

Clifton Cralg
13
ﬁ hittp://codeforfun wordpress.com

Online
Likes biking, reads tech manuals and loves to
code in Java

[l st il o]

Figure 8-16. The relative_example.xml with integrated buttons

List Views

The ListView widget is a container control that presents a list of items, each of which are
actionable. These list items are organized in a layout that sits inside a scrollable view. The
content for the individual list items is supplied programmatically from an adapter, which pulls
content from a data source. The adapter maps the data to individual views in the layout. In
this example, you will explore a simple use of a ListView component.

Create a new layout named list_view under the res » layout folder. Specify FrameLayout

as the root element. Add a ListView to the center of the FrameLayout. The preview pane

will show the ListView using the default layout called Simple 2-Line List Item. Switch to

text edit mode and add a xmlns:tools attribute to the root element tag. Set its value to
http://schemas.android.com/tools. This makes the tools: prefixed attributes available, one
of which you will use to change the way the preview renders. Add a tools:1listitem attribute
to the ListView tag and set its value to "@android:layout/simple list item 1". As shown
in the following code snippet:

<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent" android:layout_height="match_parent"
xmlns:tools="http://schemas.android.com/tools"
>

http://schemas.android.com/tools

CHAPTER 8: Designing Layouts 209

<ListView

android:layout_width="wrap_content"”
android:layout_height="match_parent"
android:id="@+id/listView"
android:layout_gravity="center"
tools:1listitem="@android:layout/simple list item 1"
/>

</Framelayout>

In earlier versions of Android Studio, you could right-click the ListView in the preview pane
during design mode and choose Preview List Content » Simple List Iltem from the menu, as
shown in Figure 8-17. This feature was removed in the 1.0 release.

Preview List [:-ontent Choose Item Layout...
3 Cut Ctrl+X VvV EHETEIE

[Copy Cil+C Simple 2-Line List Item
[l Paste Ctrl+V Checked List Item
Delete Delete Single Choice List Item

Select
Morphing
| i1 Save Screenshot..

Refactor
Go To Declaration

Multiple Choice List Item
Simple Expandable List Item
Simple 2-Line Expandable List ltem

Choose Header...
Choose Footer...

Figure 8-17. List Preview Layout option feature from Android Studio 0.8 beta

210 CHAPTER 8: Designing Layouts

Open the MainActivity class, change it to extend ListActivity and then enter the following
in the onCreate() method:

public class MainActivity extends ListActivity {

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.list view);
String[] listItems = new String[]{"Mary","Joseph","Leah", "Mark"};
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
listItems));

}

/1...
}

ListActivity is a special base class designed to provide the common functionality for
dealing with a ListView. In our case, we use the supplied setListAdapter method, which
associates an adapter with the list view. We create an ArrayAdapter and give it a context

(the currently executing activity), a list item layout, and an array of items to fill the ListView.
Build and run the app now, and it will crash! This is because of a common misuse of the
ListActivity. This special activity looks for a ListView with an id of @android:id/list. These
are special Android ids defined by the system, and this particular id lets the ListActivity
find its ListView and automatically connect it to the given ListAdapter. Change the ListView
tag in the list_view layout as follows:

<ListView
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:id="@android:id/1ist"
android:layout_gravity="center"
tools:1listitem="@android:layout/simple list item 1"
/>

Build and test the app, and you should see the list of names as illustrated in Figure 8-18.

CHAPTER 8: Designing Layouts 211

@ 5554Neaus 5 = o)

Mary

| Joseph

Leah

Mark

Figure 8-18. Screenshot of a simple ListView

You can further customize the list view appearance by providing a custom layout for the list
items. To get an idea of what the end result will look like, open list view.xml. Right-click
the ListView in the preview pane and set its Preview List Content back to Simple 2-Line
List Item. This layout uses a large text view along with a smaller text view to display multiple
values. Switch to text view to see the generated XML, shown in Listing 8-6.

Listing 8-6. Custom Layout for list items

<?xml version="1.0" encoding="utf-8"?>

<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent" android:layout_height="match_parent">

<ListView
android:layout_width="wrap content"”
android:layout_height="match_parent"
android:id="@android:id/list"
android:layout_gravity="center"
tools:1listitem="@android:layout/simple list item 2" />
</FramelLayout>

212 CHAPTER 8: Designing Layouts

A special tools:listitem attribute has been added in the ListView element to control the
layout within the preview pane. This attribute is defined in the tools XML namespace, which
was added to the FrameLayout root element. Ctrl+click | Cmd-+click the value of the listitem
attribute to navigate to its definition. This layout includes two subviews with the id values of
@android:id/text1 and @android:id/text2. Our earlier example included an array adapter
that knew how to add values to the simple list item 1 layout. With this new layout, you
need custom logic to set values for both of these subviews. Return to the MainActivity
class. Define an inner Person class at the very top to hold an extra web site value for each
person in the list, and change the onCreate() method as shown in Listing 8-7.

Listing 8-7. Create Person Class and Modify onCreate()
public class MainActivity extends ListActivity {

class Person {
public String name;
public String website;

public Person(String name, String website) {
this.name = name;
this.website = website;

}

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.list view);
Person[] listItems = new Person[]{
new Person("Mary", "www.allmybuddies.com/mary"),
new Person("Joseph", "www.allmybuddies.com/joeseph"),
new Person("Leah", "www.allmybuddies.com/leah"),
new Person("Mark", "www.allmybuddies.com/mark")
};
setListAdapter(new PersonAdapter(this,
android.R.layout.simple_expandable list item 2,
listItems)

);

/...
}

In these revisions, you create an array of Person objects, each taking name and web site
string values in the constructor. These values are cached in public variables. (Although we
strongly advocate the use of getters and setters over public variables in regular practice, we
have used the latter in our contrived example for brevity.) You then pass the list along with
the same simple _expandable list item 2 layout to a custom PersonAdapter, which we have
yet to define. Press Alt+Enter to engage IntelliSense, which will give you the opportunity to
create a stub inner class for the PersonAdapter. See Figure 8-19.

CHAPTER 8: Designing Layouts

—
Override
al 6 protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout. List view);
Person([] listItems = new Peraonf(]{
new Person("Mary", "www.allmybuddies,com/mary"),
new Person("Joseph”, "www.allmybuddies.com/joeseph"),
new Person("Leah", "www.allmybuddies,com/leah"),
new Person("Mark", "www.allmybuddies.com/mark")
i }:
: 9 setListAdapter (new Personidapter (this,
1 R.layout.simple expandable list item 2,
ms)

¥ Create Class 'PersonAdapter’

@ Create Inner Class 'PersonAdapter’

6 1
Boverride
of © public boolean onCreateOpticnaMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it
g getMenulnflacer().inflate (R.menu.menn main, menu);
E return true;
- a }
3
@
> ! goverride
ol O
E a / ¥ a
&l int id = item.getItemId():;
*

P & Run @ T0D0 6: Android Terminal [Version Control 8, 3: Changes) 0: Messages

O Cannot resolve symbol 'PersonAdapter’

Figure 8-19. Add PesonAdapter inside onCreate() method

213

Select the Create Inner Class option, and a class stub will be generated for you inside the

current class. Use the Tab key to advance through the constructor parameters. As you

advance, change each constructor parameter to Context context, int layout, and Person[]

listItems respectively. Make the class extend BaseAdapter rather than implement

ListItem, and then complete its definition using the code in Listing 8-8. Because we use the
Person class in the PersonAdapter, it needs to be moved outside the MainActivity. Put your
cursor on the Person class definition and press F6 to move it to an upper level. You will see

the dialog shown in Figure 8-20. Click Refactor to move the class.

-
#® Move Inner to Upper Level M

Class pame:
peod |

Package name:

com.apress.gerber.simplelayouts n
D Pass oputer class' instance as a parameter

Parameter name:

[Searchin comments and strings "] Search for text occurrences

Preview | | Cancel [Help
L.

Figure 8-20. Add PesonAdapter inside onCreate() method

214 CHAPTER 8: Designing Layouts

Listing 8-8. PersonAdapter Class

public class PersonAdapter extends BaseAdapter {
private final Context context;
private final int layout;
private Person[] listItems;

public PersonAdapter(Context context, int layout, Person[] listItems) {
this.context = context;
this.layout = layout;
this.listItems = listItems;

}

@verride

public int getCount() {
return listItems.length;

}

@0verride

public Object getItem(int i) {
return listItems[i];

}

@0verride

public long getItemId(int 1) {
return i;

}

@0verride
public View getView(int position, View convertView, ViewGroup parent) {
View view = convertView;
if (view==null) {
LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT INFLATER_SERVICE);
view = inflater.inflate(layout, parent, false);

}
TextView textl = (TextView) view.findViewById(android.R.id.text1);

TextView text2 = (TextView) view.findViewById(android.R.id.text2);
text1.setText(listItems[position].name);
text2.setText(listItems[position].website);

return view;

}

This basic example illustrates how an adapter creates individual list items for display.

The definition begins by caching the context, layout resource ID, and list items as member
variables, which are used later to create individual list item views. Extending BaseAdapter
gives you default implementations of some of the methods from the adapter interface.
These are methods you would otherwise be required to define explicitly. You are obligated,
however, to provide an implementation for the getCount(), getItem(), getItemId(), and
getView() abstract methods. The getCount() method is invoked by the runtime so that it
knows how many views need to be rendered. getItem() is necessary for callers that need

CHAPTER 8: Designing Layouts 215

to retrieve an item at a given position. getItemId() must return a unique number for an

item at the given position. In our example, you can merely return the position given as the
parameter, as it will be unique. Finally, getView() includes all the logic for assembling each
list item view. It is repeatedly called with a position, a convertView() that may or may not

be null, and the containing ViewGroup parent. If convertView() is null, you must inflate a
new view to hold the list item details by using the layout ID you cached from the constructor
and the parent view group as its destination. You use the LAYOUT INFLATER SERVICE system
service to do the inflation. After inflating the view, you find the text1 and text2 subviews and
fill them, respectively, with the name and web site values of the person at the given position.
Run the example and see how each person object is mapped to the newer layout. Figure 8-21
illustrates what your screen will look like.

& 5554Newus 5 L)

!s_l SimpleLayouts

Mary

www.allmybuddies.com/mary

Joseph (

www.allmybuddies.com/joeseph

Leah

www.allmybuddies.com/leah

Mark

www.allmybuddies.com/mark

S @ O 9=

Figure 8-21. List showing new list item layout and use of PersonAdapter

Layout Design Guidelines

With so many Android devices available on the market, each with different screen sizes and
densities, layout design can be challenging. You need to be aware of a few points when
designing layouts. There are also rules you can follow to keep pace with the rapidly evolving
landscape. In general, you want to pay attention to screen resolution and pixel density.

216 CHAPTER 8: Designing Layouts

Screen resolution is the total count of pixels the screen can hold, both horizontally and
vertically, and is given as a two-dimensional number. The resolution is usually given in terms
of a standard VGA measurement. VGA stands for Video Graphics Array, a standard for
desktop and laptop computers of 640x480. This means 640 pixels wide and 480 pixels tall.
These days, you can find mobile variants such as Half VGA (HVGA), 480x320; Quarter VGA
(QVGA), 320x240; Wide VGA (WVGA), 800x480; Extended Graphics Array (XGA); Wide XGA
(WXGA); and more. These are but a few of the possible resolutions in the wild.

Pixel density indicates the total number of pixels that can be squeezed within a given unit

of measurement. This measurement is independent of the screen size, though it can be
influenced by the screen size. Imagine, for example, a 1024x768 pixel resolution on a 20-inch
display vs. a 1024x768 pixel resolution on a 5-inch display. The same number of pixels are
used in both cases, but the latter screen packs these pixels into a much smaller area, which
increases their density. Pixel density is measured in dots per inch (dpi), which indicates the
number of dots, or pixels, that can fit in a 1-inch area. On Android screens, density is typically
measured in a unit known as a density-independent pixel (dp). It is a baseline measurement
based on the equivalent of 1 pixel on a 160dpi screen. Using dp as your unit of measurement
allows your layout to scale properly on devices with different densities.

Android includes another means of insulating you from different screen dimensions: resource
qualifiers. In our earlier example, we copied an image into the drawable folder, which is the
default spot that any drawable resource is pulled from. Drawable resources are typically
images but can also include resource XML files that define shape definitions, outlines, and
borders. To locate a drawable resource, the Android runtime first considers the screen
dimensions of the current device. If it falls into one of a list of major categories, the runtime
looks under a drawable folder with a resource-qualifier suffix. These are suffixes such as
ldpi, mdpi, hdpi, and xhdpi. The ldpi suffix is for low-density screens, about 120dpi (120
dots per inch). Medium-density screens, 160dpi, use the mdpi suffix. High-density screens,
320dpi, use the hdpi suffix. Extra-high-density screens use the xhdpi suffix. This is not an
exhaustive list, but it represents the more common suffixes. When you start a project in
Android Studio, a myriad of resolution-specific subfolders are created under the res folder.
You will examine how to use these folders in a practical way in our next example.

Covering Various Display Sizes

For this exercise, you’ll find a 200200 pixel profile image to swap into the Relativelayout
example you have been building. You can optionally use images from the book’s source
code download. This will be the image you use on your highest-resolution displays.

Name the image my_profile.png and save it to your hard drive. Open the project window
and expand the res folder. Your project should have drawable folders with mdpi, hdpi, xhdpi,
and xxhdpi suffixes. You need to create scaled-down versions of your original image for the
different screen sizes. You will follow a 3:4:6:8 scaling ratio for sizing. You can use Microsoft
Paint or any other tool to resize. (An open source project, called Image Resizer for Windows
and available at imageresizer.codeplex.com, can make this task trivial and integrates nicely
with Windows Explorer.) Refer to Table 8-3 for how to create scaled sizes in the individual
folders following our ratio guideline. Save each version of the image in the folder indicated
by the table and use the same my_profile.png name for each one.

http://imageresizer.codeplex.com

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 8: Designing Layouts

Table 8-3. Various Image Asset Sizes and Descriptions

217

Folder Original Size Ratio Scaled Size
drawable-xxhdpi 200x200 N/A 200x200
drawable-xhdpi 200x200 3:4 150x150
drawable-hdpi 150x150 4:6 100x100
drawable-mdpi 100x100 6:8 75x75

218 CHAPTER 8: Designing Layouts

After adding these images, open the relative_example.xml layout in designer mode and
find the image view. Click the ellipses by the src attribute of this component and find the
my_profile image in the Resources dialog box, as shown in Figure 8-22.

/® Resources -_‘; - - - M

Project I System | Color

abc_menu_hardkey_panel_mtrl_mult |
abc_popup_background_mtrl_mult
abec_spinner_mtrl_am_alpha
abc_switch_thumb_material

abe_switch_track_mtrl_alpha
abe_tab_indicator_material
abc_tab_indicator_mtrl_alpha
abe_textfield_activated_mtrl_alpha
abe_textfield_default_mtrl_alpha
abe_textfield_search_activated_mtrl_alpha
abc_textfield_search_default_mtrl_alpha
abe_textfield_search_material

187 =) =) = =) =] (g7 = [§ = == |

| E] ic_launcher
&) joseph

E] leah

[8] mark

[8] mary

= MNew Resource J “ L Cancd_J

Figure 8-22. Resources dialog box with image of Clifton Craig

After you update the picture, click the Android Virtual Device button in the preview window
to experiment with the various screen-rendering options, as shown in Figure 8-23. Select
Preview All Screen Sizes to see the mock profile rendered on several devices at once, as
shown in Figure 8-24.

CHAPTER 8: Designing Layouts 219

.[l' Einewss- [T)- Dappheme ™+ @- {2~

E E ® AVD: AndroidWear_Round_AP]_21
© AVD: AndroidWear_Square_API_21
(3 AVD: Nexus5-L

(3] AVD: Nexusl0

(3 AVD: Nexus5

() AVD: Nexuss_AP1_21
(@) AVD: Nexusé_AP1_21_2

(3] Nexus 6 (6.0°, 1440 x 2560: 560dpi)
(3] Nexus 9 (8.97, 2048 x 1536: xhdpi)
() Nexus 5 (5.0°, 1080 x 1920: xchdpi) nd loves to
(3] Nexus 7 (7.0, 1200 x 1920: xhdpi)

V' Nexus4 (4.77, 768 x 1280: xhdpi)

(3] Nexus 10 (10.1%, 2560 x 1600: xhdpi)
(3 Nexus7 (2012) (7.0", 800 x 1280: tvdpi)
() Galaxy Nexus (4.7", 720 x 1280: xhdpi)
(3) Nexus S (4.07, 480 x 800: hdpi)

(3 Nexus One (3.7, 480 = 800: hdpi)

& Android Wear Square (280 x 280: hdpi)
© Android Wear Round (320 x 320: hdpi)

£33 Android TV (1080p) (1920 x 1080: xhdpi)
[Android TV (720p) (1280 x 720: tvdpi)

Generic Phones and Tablets
Add Device Definition...

Preview All Screen Sizes

Figure 8-23. Preview All Screen Sizes from Design mode in Visual Designer

220 CHAPTER 8: Designing Layouts

Mexus One (3.7") MNexus S (4.0

Galaxy Nexus (4.77) : MNexus 5 (5.0%) MNexus 6 (6.0")

Mexus T {7.0%) 5 9(8.9% Mexus 10 (10.1%)

Figure 8-24. Layout previewed on various devices

Putting It All Together

Now you will load the layout using Java and explore how to make subtle changes during
runtime. Before you start, you need to add descriptive IDs to the components you will be
working with. Open the relative_example.xml layout in design mode and add the following
IDs to these components nested inside LinearLayout:

B imageView: profile image
textViewl: name
textView2: location
textView3: website

textView4: online_status

editText: description

CHAPTER 8: Designing Layouts 221

Make these changes by clicking each widget and then changing its id property in the
property editor in the right pane. As you make changes, you will see a pop-up dialog box
asking to update usages as well. See Figure 8-25.

.l
e D ==

Update usages as well?
This will update all XML references and Java R field references.

F?ﬂ

Iﬁ Don't ask again during this session

E | No _ Cancel

Figure 8-25. Android Studio will update usages while you work

Select the check box and click Yes to allow Android Studio to update all usages of each
widget as you work. Switch to text mode to see the end result, which is shown in Listing 8-9.

Listing 8-9. New Layout with Components Placed Inside

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout_height="match_parent">

<ImageView
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/profile_image"
android:layout_alignParentTop="true"
android:layout_alignParentlLeft="true"
android:layout_alignParentStart="true"
android:src="@drawable/my profile"
android:layout_marginLeft="5dp" />

<TextView
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:text="Clifton Craig"
android:id="@+id/name"
android:layout_alignParentTop="true"
android:layout_toRightOf="@+id/profile_image"
android:layout_marginlLeft="5dp" />

222 CHAPTER 8: Designing Layouts

<TextView
android:layout width="wrap_content"
android:layout height="wrap_content"
android:text="California"
android:id="@+id/location"
android:layout below="@+id/name"
android:layout toRightOf="@+id/profile image"
android:layout_marginlLeft="5dp" />

<TextView
android:layout width="wrap_content"
android:layout height="wrap_content"
android:text="http://codeforfun.wordpress.com"
android:id="@+id/website"
android:layout below="@+id/location"
android:layout toRightOf="@+id/profile image"
android:layout_marginlLeft="5dp" />

<LinearlLayout
android:id="@+id/details"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="wrap_content"
android:layout below="@+id/profile image"
android:layout alignParentlLeft="true"
android:layout alignParentStart="true"
android:layout_marginlLeft="5dp">

<TextView
android:layout width="wrap_content"
android:layout_height="wrap content"
android:text="0Online"
android:id="@+id/online status"
android:layout marginlLeft="5dp"
android:layout_marginTop="5dp" />

<EditText
android:layout width="match parent"
android:layout_height="wrap content"
android:id="@+id/description”
android:text="Likes biking, reads tech manuals and loves to code in Java"
android:layout_marginLeft="s5dp" />

CHAPTER 8: Designing Layouts 223

</Linearlayout>

<include
android:id="@+id/buttons"
layout="@layout/three_button"
android:layout width="match parent"
android:layout height="wrap_content"
android:layout_below="@id/details"/>

</Relativelayout>

Note how Android Studio updates not only the id definition, but also each use of each id to
keep components aligned adjacent to one another, as before. Create a new class named
ProfileActivity and modify it to look like Listing 8-10.

Listing 8-10. ProfileActivity Class

public class ProfileActivity extends Activity {

private TextView name;

private TextView location;
private TextView website;
private TextView onlineStatus;
private EditText description;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.relative_example);
name = (TextView) findViewById(R.id.name);
location = (TextView) findViewById(R.id.location);
website = (TextView) findViewById(R.id.website);
onlineStatus = (TextView) findViewById(R.id.online status);
description = (EditText) findViewById(R.id.description);

View parent = (View) name.getParent();
parent.setBackgroundColor(getResources().getColor(android.R.color.holo blue light));
name.setTextAppearance(this,android.R.style.TextAppearance DeviceDefault Large);
location.setTextAppearance(this, android.R.style.TextAppearance DeviceDefault Medium);
location.setTextAppearance(this, android.R.style.TextAppearance DeviceDefault Inverse);
website.setTextAppearance(this, android.R.style.TextAppearance DeviceDefault Inverse);
onlineStatus.setTextAppearance(this, android.R.style.TextAppearance DeviceDefault
Inverse);

description.setEnabled(false);
description.setBackgroundColor(getResources().getColor(android.R.color.white));
description.setTextColor(getResources().getColor(android.R.color.black));

224 CHAPTER 8: Designing Layouts

Here you’ve added member fields for each of the TextView and EditText components. The
onCreate() method starts by finding each view component and saving them in the individual
member variables. Next you find the parent of the name label and change its background
color to light blue. Android Studio sports a unique feature that decorates the left-hand gutter
with a square, illustrating the color referenced on this line. These squares also appear on
other lines that reference color resources. You then change the text appearance of each
TextView, making the name stand out with a large appearance. You are using predefined
styles from within the android.R class, which includes references to all available resources
from the Android SDK. Each remaining TextView is also updated to use either a medium or
an inverse appearance. Finally, you disable the description EditText to prevent modification
of its contents. You also set its background to white while changing the text color to black.

To try our new ProfileActivity and layout, you have to define it in AndroidManifest.xml
and link it to MainActivity. Open the manifest and add a tag for our ProfileActivity under
the MainActivity definition:

<activity
android:name=".ProfileActivity"
android:label="@string/app_name" />

Next return to MainActivity and override the onListItemClick() method with the following
code to create a new intent around the ProfileActivity class, and start the activity. Run the
example and try clicking any list item to bring up its profile. See Figure 8-26.

@0verride

protected void onListItemClick(ListView 1, View v, int position, long id) {
super.onListItemClick(1l, v, position, id);
Intent intent = new Intent(this, ProfileActivity.class);
startActivity(intent);

CHAPTER 8: Designing Layouts

“ California
http://codeforfun.wordpress.com

Online

Likes biking, reads tech manuals and
loves to code in Java

Figure 8-26. New layout with buttons and EditText

Now you’ll learn how to carry values from the list view into the next activity. Change the
onCreate() method in the MainActivity class using the code in Listing 8-11.

Listing 8-11. Modifications to MainActivity

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.list view);
Person[] listItems = new Person[]{
new Person(R.drawable.mary, "Mary", "New York",
"www.allmybuddies.com/mary",
"Avid cook, writes poetry."),
new Person(R.drawable.joseph,"Joseph", "Virginia",
"www.allmybuddies.com/joeseph",
"Author of several novels."),
new Person(R.drawable.leah, "Leah", "North Carolina",
"www.allmybuddies.com/leah",
"Basketball superstar. Rock climber."),
new Person(R.drawable.mark, "Mark", "Denver",
"www.allmybuddies.com/mark",
"Established chemical scientist with several patents.")

};

225

226 CHAPTER 8: Designing Layouts

setListAdapter(new PersonAdapter(this,
android.R.layout.simple_expandable list item 2,
listItems)
)
}

You are adding a name, location, and description fields to the constructor call. Now change
the Person class as to accept and save these new values using the code in Listing 8-12.

Listing 8-12. Modifications to the Person Class

class Person {
public int image;
public String name;
public String location;
public String website;
public String descr;

Person(int image, String name, String location, String website, String descr) {
this.image = image;
this.name = name;
this.location = location;
this.website = website;
this.descr = descr;

}

Next change the onListItemClick() as follows:

@0verride

protected void onListItemClick(ListView 1, View v, int position, long id) {
super.onListItemClick(l, v, position, id);
Person person = (Person) l.getItemAtPosition(position);
Intent intent = new Intent(this, ProfileActivity.class);
intent.putExtra(ProfileActivity.IMAGE, person.image);
intent.putExtra(ProfileActivity.NAME, person.name);
intent.putExtra(ProfileActivity.LOCATION, person.location);
intent.putExtra(ProfileActivity.WEBSITE, person.website);
intent.putExtra(ProfileActivity.DESCRIPTION, person.descr);
startActivity(intent);

}

Here you retrieve the Person object that was clicked and pass each of its member variables
to the next activity as intent extra values. These extra values are mapped to ProfileActivity
constants, which we define at the top of the ProfileActivity class:

public class ProfileActivity extends Activity {
public static final String IMAGE = "IMAGE";

public static final String NAME = "NAME";
public static final String LOCATION = "LOCATION";

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 8: Designing Layouts 227

public static final String WEBSITE = "WEBSITE";
public static final String DESCRIPTION = "DESCRIPTION";

/1...
}

Now make the following changes from Listing 8-13 to the ProfileActivity to define a
profileImage ImageView member variable, and read all of the intent extras into the cached
view components.

Listing 8-13. Modifications to the PersonActivity Class

private ImageView proflieImage;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.relative example);
name = (TextView) findViewById(R.id.name);
location = (TextView) findViewById(R.id.location);
website = (TextView) findViewById(R.id.website);
onlineStatus = (TextView) findViewById(R.id.online status);
description = (EditText) findViewById(R.id.description);
proflieImage = (ImageView) findViewById(R.id.profile image);

int profileImageld = getIntent().getIntExtra(IMAGE, -1);
proflieImage.setImageDrawable(getResources().getDrawable(profileImageld));
name.setText(getIntent().getStringExtra(NAME));
location.setText(getIntent().getStringExtra(LOCATION));
website.setText(getIntent().getStringExtra(WEBSITE));
description.setText(getIntent().getStringExtra(DESCRIPTION));

Run the app and experiment with tapping items from the list view to bring up the
corresponding profile. You can tap the Back key to navigate back to the list view and pick a
different item. See Figure 8-27.

228 CHAPTER 8: Designing Layouts

(@ sssanens s = [E=SEE———)

-
SimpleLayouts

, www.allmybuddies.com/mark

Denver
Online

Established chemical scientist with
several patents.

o

Figure 8-27. Layout with ImageView

Fragments

Fragments are a step between the activities and includable files you examined earlier.
Fragments are reusable snippets of XML, similar to include layouts. However, like activities,
they have the added benefit of containing business logic. Fragments are used to adapt
your user interface to different form factors. Consider how our earlier example, which we
developed with a smartphone in mind, would look on a 10-inch tablet. The extra real estate
afforded by the larger display would make a screen with a simple list view look clumsy at
best. Using fragments, you can combine both screens intelligently so your display renders
as it currently does on smaller screens but contains both the list and detail views on larger
screens. To perform this feat, you must move all of your Ul update logic out of the activities
and into new fragment classes. Beginning with the ListView logic in the MainActivity, you
need to pull the nested classes out as external top-level classes. Click the Person class

at the top of the MainActivity and press F6. The Move Refactor dialog box that pops up
asks which package and directory you would like to move the class to. You can accept the
defaults here. Do the same for the PersonAdapter class at the bottom.

Create a new class named BuddyListFragment, which extends ListFragment and contains
the initialization of the ListView you had in the MainActivity, as shown in Listing 8-14.

CHAPTER 8: Designing Layouts

Listing 8-14. BuddyListFragment Class Which Extends ListFragment

import
import
import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;
android.support.v4.app.ListFragment;
android.view.LayoutInflater;
android.view.View;
android.view.ViewGroup;
android.widget.ListView;

class BuddylListFragment extends ListFragment {

private OnListItemSelectedListener onListItemSelectedListener;

public interface OnListItemSelectedListener {

}

void onListItemSelected(Person selectedPerson);

@0verride
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
Person[] listItems = new Person[]{
new Person(R.drawable.mary, "Mary",
"www.allmybuddies.com/mary",
"New York","Avid cook, writes poetry."),
new Person(R.drawable.joseph, "Joseph",
"www.allmybuddies.com/joeseph",
"Virginia","Author of several novels"),
new Person(R.drawable.leah, "Leah",
"www.allmybuddies.com/leah",
"North Carolina",
"Basketball superstar. Rock climber."),
new Person(R.drawable.mark, "Mark",
"www.allmybuddies.com/mark",
"Denver",
"Established chemical scientist with several patents.")
};
setListAdapter(new PersonAdapter(getActivity(),
android.R.layout.simple expandable list item 2,
listItems)

)5

@0verride
public void onAttach(Activity activity) {

super.onAttach(activity);
if(!(activity instanceof OnListItemSelectedListener)) {
throw new ClassCastException(
"Activity should implement OnListItemSelectedlListener");
}
//Save the attached activity as an onlListItemSelectedlListener
this.onListItemSelectedListener = (OnListItemSelectedListener) activity;

229

230 CHAPTER 8: Designing Layouts

@0verride

public void onListItemClick(ListView 1, View v, int position, long id) {
Person selectedPerson = (Person) 1l.getItemAtPosition(position);
this.onListItemSelectedListener.onListItemSelected(selectedPerson);

}

@0verride
public View onCreateView(lLayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return inflater.inflate(R.layout.list view, container, false);

}

This fragment mirrors the onCreate() method in the MainActivity but adds two more life-cycle
methods. The onAttach() method captures the attached activity that must implement

the OnListItemSelectedListener() declared at the top of the class. The ListFragment
superclass defines an onListItemClick() callback method that is overridden here. In our
custom version, you refer to the cached onListItemSelectedListener() and pass the
selected person onto it. Finally, you override the onCreateView() life-cycle method that
inflates our 1list view layout and returns it to the runtime.

Create a BuddyDetailFragment class that extends Fragment and fill it with the code shown
in Listing 8-15.

Listing 8-15. BuddyDetailFragment Code

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentActivity;
import android.view.LlayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

public class BuddyDetailFragment extends Fragment {
public static final String IMAGE = "IMAGE";
public static final String NAME = "NAME";
public static final String LOCATION = "LOCATION";
public static final String WEBSITE = "WEBSITE";
public static final String DESCRIPTION = "DESCRIPTION";
private Person person;

@verride

public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle bundle) {
updatePersonDetail(bundle);
return inflater.inflate(R.layout.relative example, container, false);

CHAPTER 8: Designing Layouts

@0verride

public void onStart() {
super.onStart();
updatePersonDetail (getArguments());

}

private void updatePersonDetail(Bundle bundle) {
//if bundle arguments were passed, we use them
if (bundle != null) {
this.person = new Person(
bundle.getInt(IMAGE),
bundle.getString (NAME),
bundle.getString (LOCATION),
bundle.getString (WEBSITE),
bundle.getString (DESCRIPTION)
)s
}
//if we have a valid person from the bundle
//or from restored state then update the screen
if(this.person !=null){
updateDetailView(this.person);
}

}

public void updateDetailView(Person person) {
FragmentActivity activity = getActivity();

ImageView profileImage = (ImageView) activity.findViewById(R.id.profile_image);

TextView name = (TextView) activity.findViewById(R.id.name);

TextView location = (TextView) activity.findViewById(R.id.location);
TextView website = (TextView) activity.findViewById(R.id.website);
EditText description = (EditText) activity.findViewById(R.id.description);

profileImage.setImageDrawable(getResources().getDrawable(person.image));
name.setText(person.name);

location.setText(person.location);

website.setText(person.website);

description.setText(person.descr);

}

This idea is similar to the ProfileActivity created earlier. However, you now have an

231

internal Person member variable that you use to hold the bundle values. You are doing this
because you now read values from the bundle from two places, onCreate() and onStart().
You have also made a public method that allows external callers to update the fragment with

a given person. The other thing to note is that you override the onCreateView() life-cycle

method and ask the inflator to inflate the appropriate view by using the resource ID.

232 CHAPTER 8: Designing Layouts

Our main screen will be changed to reflect a single fragment, which will have the list view as
before. Simplify the activity main layout to consist of a single FrameLayout:

<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/empty_fragment_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingleft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical_margin"
android:paddingBottom="@dimen/activity vertical margin"
>

</FramelLayout>

This empty layout has an appropriately named ID with the value empty fragment container.
You will later add a fragment to this layout dynamically. Revisit your res directory to create
another layout file using the special resource qualifier large. Add the new resource file by
right-clicking the res folder and choosing New » Android resource file. Set the name to
activity main, the same name used before. Set the Resource Type to Layout. Select the
size from the list of available qualifiers; choose Large from the Screen Size drop-down menu.
See Figure 8-28 for guidance. This works similarly to our earlier example, in which you
added images for various screen densities. The layout file will be located in the layout-large
directory. Layouts in this folder will be selected on devices that are classified as large, for
example, 7-inch tablets and above.

-
New Resource File Mﬂ
File name: ac.t"i.\.rit-y_mai.n] T

Resourcetype: | Layout @

Root element: LinearLayout

Source set: main

Directory name: | layout-large ‘

Ayailable qualifiers: Chosen qualifiers: Screen size:

@ Country Code [~]
ge

¢ Network Code

D Language

) Region

Z Layout Direction a2

14 Smallest Screen Width E

= Screen Width —_— I
[screen Height

{1 Orientation

i Ul Mode

m | Cancel

%

Figure 8-28. Select layout-large from New Resource Directory

CHAPTER 8: Designing Layouts 233

Open the newly created activity main layout, switch to text mode and enter the
following XML:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">

<fragment android:name="com.apress.gerber.simplelayouts.BuddyListFragment"
android:id="@+id/list_fragment"
android:layout_width="wrap content"
android:layout_height="match_parent"
/>

<fragment android:name="com.apress.gerber.simplelayouts.BuddyDetailFragment"
android:id="@+id/detail_fragment"
android:layout_width="wrap content"
android:layout_height="match_parent"
/>

</LinearLayout>

Note that it renders the layout on a tablet AVD. The preview pane will complain that it
doesn’t have enough information at design time to render your layout. It will suggest a
couple of layouts to associate with the preview and also give you an option to pick from
layouts in your project. Use the Pick Layout hyperlink to choose a layout for your project.
Choose the 1ist_view layout for the first fragment and the relative example for the second
fragment, as illustrated in Figure 8-29.

234 CHAPTER 8: Designing Layouts

© MainActivityjava X | [activity_mainxml X | B Large\activity_mainxml X

<hml version="1.0" encoding="utf-8"7>

£ S<LinearLayout xmlns:android="http://schesas.android.com/apk/res/android”

android:orientation="horizontal®
android:layout_width="match_parent”
android:layout_height="match_parent">

<fragment android:name="com.apress.gerber.simplelayouts.BuddyListPragment

android:id="g+id/1ist_fragment”
android:layout width="wrap content”
android:layout height="match parent”
>

<fragment android:name="com.apress.gerber.simplelayouts.BuddyDetailFragm

android:ide="g#+id/detail fragment”
android:layout widthe="wrap content®
android:layout height="match parent”
>

Ei</LinearLayout>

Design | Text

Figure 8-29. Linear layout containing fragments

=E¢ | Preview

Q- &

BiNows7- [Dappheme =+ @- i~

Ba aca gm &

¥ Rendering Problems
A <fragment> tag allows a layout file to dymamically include
different layouts at runtime. At layout edicing time the

specific layout to be used is not known. You can choose

which

layout you would like previewed while editing the

layout.

- <fragment com.apress.gerber.simplelayouts.BuddyListfra
Use Blavouc/list view, Use

{aizple ls lisc fctem 2. Blck Lavout...)
- <fragment
com, apress .gerber. lel i 1Fragment ...>
flavour/relazive exazple, Pick Lavout...)

Do not warn about <fraoment> tags in this session

At this point, the list view will occupy the entirety of the screen. You need to adjust the widths
and weights slightly to give room to view both fragments. The trick is to set the widths to

0dp and use the weight property to properly size the widgets. Change the widths of both
fragments to Odp. Set the BuddyListFragment weight to 1 and the BuddyDetailFragment to 2.
The weight property allows you to size components based on a ratio of available space. The
system sums the weights of all components in the layout and divides the available space

by that sum. Each component takes a portion of space equivalent to its weight. In our case,
the detail fragment will occupy 2/3 of the screen, while the list will occupy 1/3. Your changes

should resemble Listing 8-16.

Listing 8-16. Linear Layout Containing Fragments with Changes

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">

<fragment android:name="com.apress.gerber.simplelayouts.BuddyListFragment"

android:id="@+id/list_fragment"

android:layout_weight="1"
android:layout_width="odp"

CHAPTER 8: Designing Layouts 235

android:layout_height="match_parent"
tools:layout="@layout/list view" />

<fragment android:name="com.apress.gerber.simplelayouts.BuddyDetailFragment"
android:id="@+id/detail_fragment"
android:layout_weight="2"
android:layout_width="odp"
android:layout_height="match_parent"
tools:layout="@layout/relative_example" />

</LinearLayout>

Experiment with the preview pane. Change the orientation to landscape or choose different
AVDs using the controls in the toolbar. Figure 8-30 illustrates the layout on the Nexus 10 in
landscape.

#\ SimpleLayouts - CandroidBook\SimpleLayouts] - [app - ~\appharcimainives\ayout largetactivity_mainml - Android Shudia 101 P |
Efe [t Yiew Nrvignte Gode Amabge Beficter Quid Rn Jock VC3 Window Help 1
DO X0 M ag ¢ W (Fwe- b R YTAFES @ FLES ? 19

dres | [layout-large 8 activity mainami

= 1§ Mewus 10- = (BappTheme = i@~ §n-

1 Project
TpurEe iy

=] 1 Structure

Pafon uma 3

apA g ai0eis 5

Variants

Buia

S 3 Favorites

Design | Tet

P gFun BT000 & gaAndroid [Terminal G vesion Cortrel B 3: Camges § Messages Ts Bertlog [F Gradie Console M Memory Meritor
) 4 il o Akl grents for the list and detail views. Alco sdds a . (12 g2) M1 CRLF : Gitmaster : ® @

Figure 8-30. View the fragment in landscape on a Nexus 10

With these two fragments in place, you can open MainActivity and simplify it. Make

it extend FragmentActivity. FragmentActivity is a special class that allows you

to find fragments in the view hierarchy and perform fragment transaction through a
FragmentManager class. You will use transactions in our example to add and replace
fragments on the screen. On the smaller-screen devices, the runtime will select the layout
with empty fragment container. You will use FragmentManager to add our BuddyListFragment
to the screen. You will also create a transaction when replacing one fragment with another
and add it to the back stack so the user can unwind the action by clicking the Back button.

236 CHAPTER 8: Designing Layouts

Simplify the onCreate() method as shown in Listing 8-17.

Listing 8-17. Simplified onCreate() Method

@verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
if(findviewById(R.id.empty fragment container)!=null) {
// We should return if we're being restored from a previous state
// to avoid overlapping fragments.
if (savedInstanceState != null) {
return;
}

BuddylListFragment buddylListFragment = new BuddylistFragment();

// Pass any Intent extras to the fragment as arguments
buddyListFragment.setArguments(getIntent().getExtras());
FragmentTransaction transaction =
getSupportFragmentManager().beginTransaction();
transaction.add(R.id.empty fragment container, buddylListFragment);
transaction.commit();

}

You start the method by setting the content view to the activity main layout, which you
simplified. You then check whether you should return early if the app is being restored from
a prior state. You then instantiate BuddyListFragment and pass any intent extras to it as
arguments. Next you create a FragmentTransaction, to which you add your fragment and
commit the transaction. You perform this operation only in the case where you find

empty fragment container.

Change the class declaration so it also implements the
BuddyListFragment.OnListItemSelectedListener interface. It should look as follows:

public class MainActivity extends FragmentActivity
implements BuddylListFragment.OnListItemSelectedListener {

IntelliSense will flag the class in error, as it does not define the required method. Press
Alt+Enter and select the prompt to generate the method stub. Fill it in using the example
shown in Listing 8-18.

Listing 8-18. Code Showing FragmentManager Transaction

@verride
public void onListItemSelected(Person selectedPerson) {
BuddyDetailFragment buddyDetailFragment = (BuddyDetailFragment)
getSupportFragmentManager () .findFragmentById(R.id.detail fragment);

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 8: Designing Layouts

if (buddyDetailFragment != null) {
buddyDetailFragment.updateDetailView(selectedPerson);

} else {
buddyDetailFragment = new BuddyDetailFragment();
Bundle args = new Bundle();
args.putInt(BuddyDetailFragment.IMAGE, selectedPerson.image);
args.putString(BuddyDetailFragment.NAME, selectedPerson.name);
args.putString(BuddyDetailFragment.LOCATION, selectedPerson.location);
args.putString(BuddyDetailFragment.WEBSITE, selectedPerson.website);
args.putString(BuddyDetailFragment.DESCRIPTION, selectedPerson.descr);
buddyDetailFragment.setArguments(args);
//Start a fragment transaction to record changes in the fragments.
FragmentTransaction transaction =

getSupportFragmentManager().beginTransaction();

// Replace whatever is in the fragment_container view with this fragment,
// and add the transaction to the back stack so the user can navigate back
transaction.replace(R.id.empty fragment container, buddyDetailFragment);
transaction.addToBackStack(null);

// Commit the transaction
transaction.commit();

}

Remove the onListItemSelected() method, as this code replaces it. Here you check
whether buddyDetailFragment is already in the view hierarchy. If so, you find it and update
it. Otherwise, you create it fresh and pass the selected person in as individual values in a
bundle by using the keys you defined in BuddyDetailFragment. Finally, create and commit
a fragment transaction in which you replace the list fragment with the detail fragment and
add the transaction to the back stack. Run the code on both a tablet and a smartphone
(Figure 8-31 and Figure 8-32, respectively) to see the different behavior. You can create a
Nexus 10 tablet AVD for the purposes of large-screen testing.

237

238 CHAPTER 8: Designing Layouts

Joseph
[e Basketball superstar. Rock climber.
jf Leah AddFriend Follow Message

Mark

Figure 8-31. Layout rendered on a tablet

[@ ss54tenss s =

1§r SimpleLayouts

Joseph "
| www.allmybuddies.com/joeseph
Virginia

Online

Author of several novels

Add Friend Follow Message

Figure 8-32. Layout rendered on a phone

CHAPTER 8: Designing Layouts 239

Summary

In this chapter, you learned the basics about designing user interfaces in Android Studio.
You used both the Visual Designer and the text editor to create and modify layouts. You
learned how to use the various containers and properties to align elements in the user
interface and also how to nest containers to create complex interfaces. We explained how
to size elements in your layouts for various screen sizes and device types and we illustrated
how to view your layouts on multiple devices simultaneously. We touched on fragments.
And there is much more detail with each of these topics. Android includes a wealth of
customization that allows you to build and tune user interfaces to meet your needs.

See https://developer.android.com to explore many of the more advanced features and
APls that are available.

https://developer.android.com/

Chapter

Currencies Lab: Part 1

This chapter, as well as the next, shows you how to use Android Studio in the context of
building an app called Currencies. The purpose of Currencies is to provide a convenient way
to convert between foreign currencies and a user’s home currency. The typical use-case is
that a user is travelling abroad and needs to either exchange money or purchase something
in a foreign currency. Currency exchange rates are always fluctuating and may even change
from one minute to the next, so it’s important that the user have access to the most up-to-
date data. The Currencies app fetches the latest exchange rates from a web service hosted
by openexchangerates.org.

Not only do currencies fluctuate, but the active currency codes listed on the exchanges
may also change. For example, Bitcoin (BTC) has recently been added to the list of traded
currencies on openexchangerates.org. Had we developed the Currencies app and hard-coded
the active currency codes just a short while ago, we might have missed Bitcoin, or

worse, provided users an option to choose a currency from a failed state that is no longer
traded. To resolve this issue, we need to fetch the active currency codes published by
openexchangerates.org before we populate the spinners used in the layout of the main
activity. If you point your browser to openexchangerates.org/api/currencies.json, you
can see the active currency codes in JSON format, which are thankfully both machine and
human readable. Among the Android features and technologies covered in the Currencies
app are advanced layouts, assets, shared preferences, styles, web services, concurrency,
and dialog boxes.

Note We invite you to clone this project using Git in order to follow along, though you will be
recreating this project with its own Git repository from scratch. If you do not have Git installed on
your computer, see Chapter 7. Open a Git-bash session in Windows (or a terminal in Mac or Linux)
and issue the following git command: git clone https://bitbucket.org/csgerber/
currencies.git Currencies

24

http://openexchangerates.org
http://openexchangerates.org
http://openexchangerates.org
http://openexchangerates.org/api/currencies.json
http://dx.doi.org/10.1007/9781430266013_7
https://bitbucket.org/csgerber/currencies.git Currencies
https://bitbucket.org/csgerber/currencies.git Currencies

242 CHAPTER 9: Currencies Lab: Part 1

The Currencies Specification

To resolve the active currency codes problem described earlier, we’ll use a typical Android
convention called a splash screen. When the app firsts launches (see Figure 9-1), the user is
presented with an activity that contains only a photo of various currencies. While this splash
screen activity is visible, a background thread fetches the active currency codes. When the
background thread successfully terminates, the splash screen activity calls the main activity
and passes the active currency codes to it. The main activity then uses the active currency

codes to populate its spinners. Even assuming relatively poor connectivity, the splash screen
activity will be visible for only about a second.

w
- 24
e
=

e
=
e
]
2
"

Figure 9-1. Currency splash screen

If the user previously selected a home currency and foreign currency, those values are fetched
from the user’s shared preferences, and the appropriate values are applied to the spinners
(see Figure 9-2). For example, if the last currency combination used was HKD as foreign
currency and USD as home currency, then the next time the user launches the app, those
same values will be applied to the spinners. In a corner case, either or both the home currency
and/or the foreign currency values stored in shared preferences are no longer traded. In this
scenario, the affected spinners will simply display the first currency code listed.

CHAPTER 9: Currencies Lab: Part 1 243

. Currencies

Foreign Cu

CNY | Chinese Yuan

Calculate

Home C urrency

USD | United States Dollar

Figure 9-2. The input currency amount

Once the main activity is visible, focus is set to an EditText control that is located in the top
tier of the main activity. This EditText control accepts numeric data only and represents the
foreign currency amount to be converted. After selecting the foreign and home currencies
from the spinners, and inputting the desired amount to be converted, the user clicks the
Calculate button, which fires a background thread that fetches the current exchange rates.
While the background thread is active, the user sees a dialog box displaying “One moment
please” (see Figure 9-3); this dialog box allows the user to abort the operation by clicking
the Cancel button. Once that background thread terminates successfully, a JSON object

is returned from openexchangerates.org that contains the exchange rates for all active
currency codes relative to the US dollar. The proper values are then extracted, and the result
is calculated. The result is formatted to five decimal places and displayed in a TextView
control in the bottom tier of the main activity, as shown in Figure 9-4.

http://openexchangerates.org

244 CHAPTER 9: Currencies Lab: Part 1

F1011:47

Cancel

Figure 9-3. Calculating the result

. Currencies

Foreign Currency

CNY | Chinese Yuan

450

Calculate
Home Currency

USD | United States Dollar

72.39314 USD

Figure 9-4. Returning the result

CHAPTER 9: Currencies Lab: Part 1 245

The action bar of the Currencies app has a menu with three options: View Active Codes,
Invert Codes, and Exit (see Figure 9-5). The View Active Codes option launches a browser
and points it to openexchangerates.org/api/currencies.json. The Invert Codes option
swaps the values displayed in the spinners for home currency and foreign currency. For
example, if the foreign currency is CNY and the home currency is USD, after activating the
Invert Codes menu option, the foreign currency will be USD and the home currency will be
CNY. The Exit option simply exits the app. The results obtained in Figures 9-4 and 9-5
(72.39314 USD and 72.44116 USD) differ slightly even though we used the same input
value of 450. The interesting reason for this difference is that exchange rates quoted on
openexchangerates.org fluctuate from minute to minute, and we calculated the results for
these two screenshots just a few minutes apart.

. Currencies

view active codes
CNY | Chinese Yu invert codes

exit

Calculate

Home Currency

USD | United Stz

72.44116 USD

Figure 9-5. The Options menuUsing the New Project Wizard

Now that you understand how the Currencies app is supposed to function, let’s create a
new project by choosing File » New Project. (The New Project Wizard and its screens are
covered in Chapter 1.) Name your app Currencies. We’ve chosen to use gerber.apress.com
as the domain, but you can enter whichever domain you like. The convention in Android
(and Java) is to reverse the domain name for package names. You will notice that the
package name is the reverse domain name plus the project in all lowercase letters. As with
the other labs and exercises in this book, you can store this lab in the C:\androidBook\
Currencies directory. If you're running a Mac, place the Currencies app in your labs parent
directory. Click Next.

http://openexchangerates.org/api/currencies.json
http://openexchangerates.org
http://dx.doi.org/10.1007/9781430266013_1
http://gerber.apress.com/

246 CHAPTER 9: Currencies Lab: Part 1

The next step in the wizard is to select a target API level. There is a trade-off between
making your app compatible with as many possible devices (by setting your target API low),
and increasing the number of features available to you as a developer (by setting your target
API level high). However, this trade-off is skewed heavily in favor of setting your target API
level low because Google provides excellent compatibility libraries that provide most of the
functionality you would find in the later APIs. The best practice in developing commercial
apps in Android is to choose the highest target API level that still allows your app to run

on approximately 100 percent of devices. Currently, that target API level is API 8. Please
note that Android Studio will automatically import the appropriate compatibility libraries
(a.k.a. support libraries) for you. API 8: Android 2.2 (Froyo) should be selected by default.

If it’s not already selected, select API 8: Android 2.2 (Froyo) and then click Next.

The next step in the wizard is to choose the type of activity that will be generated for you.
Choose Blank Activity and click Next. If the default values are not as they appear in Figure 9-6,
set them as such. Click Finish, and Android Studio will generate a new project for you.
Gradle (the build tool that is bundled with Android Studio and covered in Chapter 13) will
begin downloading any dependencies such as compatibility libraries. Keep an eye on the
status bar to view the status of these processes. Once these processes are complete, you
should have an error-free, new project.

Creates a new blank activity with an action bar.

Activity Name: | MainActivity
Layout Name: | activity_main
Title: | MainActivity

Menu Resource Name: l menu_main

Blank Activity

Figure 9-6. The Create New Project dialog box

Initializing the Git Repository

Git has become an indispensable tool for Android app development, and this shows you
how to initialize a Git repository for your Android projects. For a more comprehensive tutorial
on how to use Git, see Chapter 7. Choose VCS » Import into Version Control » Create Git
Repository, as shown in Figure 9-7. When prompted to select the directory where the new
Git repository will be created, make sure that the Git project will be initialized in the root

http://dx.doi.org/10.1007/9781430266013_13
http://dx.doi.org/10.1007/9781430266013_7

CHAPTER 9: Currencies Lab: Part 1 247

project directory, which is called Currencies and is located at C:\androidBook\Currencies
in this example, as shown in Figure 9-8. If you’re running a Mac computer, select the
Currencies directory in your labs parent directory. Click OK.

1 Run Tools m“d Help

b ',;', app ~ Local History »
Enable Version Control Integration...

mainxml
B et VCS Operaticns Popup... Alt+Back Quote E
<Relativelay £pphEalch S .. com/apk/res/android” I Dﬂ =
xmlns: to Checkout from Version Control »
narota. troweveshepostoy - oI

android:paddingRight="¢dimen/activi -'.'}__hori zontal, @ share Project on GitHub

android:paddingTop="8dimen/activity_vertical mar Create Mercurial Repository

android:paddingBottom="fdimen/activity vertical i Import into Subversion...
tools:context=".MainActivity"> Share Project (Subversion)...
<TextView

Figure 9-7. Initializing the Git repository

Select directory where the new Git repository will be created.

a ™ R X O @ Hide path

| CAandroidBook\Currencies ﬁ

Bca
[263b29bad95¢c1999971467b747284
1 AMD
r [androidBook

> [.gradle
[.idea
[2pp
[gradle

W)

Ana

“ | Cancel ‘ Help |

Figure 9-8. Selecting the directory for Git initialization

Make sure to switch your Project tool window to Project view. The view combo-box is
located at the top of the Project tool window and is set to Android by default. If you inspect
the files in the Project tool window, you will notice that most of these files have turned
brown, which means that they are being tracked by Git but are not scheduled to be added
to the repository. To add them, select the Currencies directory in the Project tool window
and press Ctrl+Alt+A | Cmd+Alt+A or choose Git » Add. The brown files should turn green,
which means that they have been added to the staging index in Git and are now ready to be
committed. If this process of adding and then staging assets seems tedious, take heart that
you will need to do this only once; from here on out, Android Studio will manage the adding
and staging of files for you automatically.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

248 CHAPTER 9: Currencies Lab: Part 1

Press Ctrl+K | Cmd+K to invoke the Commit Changes dialog box, shown in Figure 9-9. The
Author combo box is used to override the current default committer. You should leave the
Author combo box blank, and Android Studio will simply use the defaults you initially set
during your Git installation. In the Before Commit section, deselect all check-box options.
Type the following message in the Commit Message field: Initial commit using new project
wizard. Click the Commit button twice. Inspect the Changes tool window by pressing Alt+9 |
Cmd+9 to see your commit.

ae OOk » Changelisp[nefaun_jl Git

™ [ApplicationTest.java Author: u
v @ B3 main (12 files) :
v E [java\com\apress\gerberci (J Amend commit
(¥ [B MainActivity.java
v [B res (10 iles) Gefore Commit
v MO drawable-hdpi (1 file) [Reformat code

New: 19 [l Rearrange code
- 9 O Optimize imports
== CI Perform code analysis
I____l Check TODO (Show All) Configure

(] Update copyright

Commit Message

Initial commit using new project wizard

Figure 9-9. Committing initial changes with the Commit Changes dialog box

Modifying Layout for MainActivity

In this section, we’ll modify the layout for MainActivity. The New Project Wizard created a file
for us called activity main.xml. Open this file and refer to Figure 9-2 (shown previously) and
Listing 9-1. The views in Figure 9-2 are arrayed vertically, so a LinearLayout with a vertical
orientation seems like a good choice for our root ViewGroup. The widths of our views will fill
the parent ViewGroup, so layout width should be set to fill_parent whenever possible. The
fill parent and match_parent settings may be used interchangeably. To express heights for
the views in our layout, we want to avoid hard-coding dp (density-independent pixel) values
whenever possible. Instead, we will use a property called layout_weight to instruct Android
Studio to render a view’s height as a percentage of its parent ViewGroup.

The layout_weight property is calculated as a fraction of the sum of the child views’
layout_weight values of any given parent ViewGroup. For example, let’s assume that we
have a TextView and a Button nested inside a LinearLayout with an orientation of vertical.

If the TextView has a layout_weight of 30 and the Button has a layout_weight of 70, then
the TextView would occupy 30 percent of its parent’s layout height, and the Button would
occupy 70 percent of its parent’s layout height. To make our task easier, let’s assume 100 as

CHAPTER 9: Currencies Lab: Part 1 249

the layout _weight sum so that each layout weight value will be expressed as a percent. The
only catch with using this technique is that layout height is a required property in Android
views, so we must set the layout_height value to 0dp. By setting the layout height to odp,
you are effectively telling Android to ignore layout_height and use layout weight instead.

As you examine the views contained in this layout, notice that some of them have an ID,
whereas others do not. Assigning an ID to a view is useful only if that view will be referenced
in Java code. If a view will remain static throughout the user experience, there’s no reason to
assign an ID to it. As you re-create the layout from Listing 9-1, pay attention to the use of id,
as well as the use of both layout weight and layout height. With the activity_main.xml tab
selected, you will see two additional tabs along the bottom, Design and Text. Click the Text
tab and then either type the code contained in Listing 9-1 or copy and paste if you’re reading this
book electronically. Be sure to completely replace any existing XML code in activity main.xml.

Listing 9-1. activity_main.xml Code

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:background="#000"
android:orientation="vertical">

<Linearlayout
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_weight="20"
android:orientation="vertical">

<TextView
android:layout width="fill parent"
android:layout_height="odp"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:layout_weight="30"
android:gravity="bottom"
android:text="Foreign Currency"
android:textColor="#ff22e9ff"/>

<Spinner
android:id="@+id/spn_for"
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:layout_weight="55"
android:gravity="top"/>

<TextView
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_marginlLeft="10dp"

250 CHAPTER 9: Currencies Lab: Part 1

android:layout_marginRight="10dp"
android:layout_weight="15"
android:gravity="bottom"
android:text="Enter foreign currency amount here:"
android:textColor="#666"
android:textSize="12sp"/>

</Linearlayout>

<LinearlLayout
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:layout_weight="20"
android:background="#222">

<EditText
android:id="@+id/edt_amount"
android:layout_width="fill parent"
android:layout_height="50dp"
android:layout_gravity="center vertical"
android:layout_marginLeft="5dp"
android:layout_marginRight="5dp"
android:background="#111"
android:digits="0123456789."
android:gravity="center_vertical"
android:inputType="numberDecimal"
android:textColor="#FFF"
android:textSize="30sp">

<requestFocus/>
</EditText>
</LinearlLayout>

<Button
android:id="@+id/btn_calc"
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_marginlLeft="10dp"
android:layout_marginRight="10dp"
android:layout weight="10"
android:text="Calculate"
android:textColor="#AAA"/>

<Linearlayout
android:layout_width="fill parent"
android:layout_height="odp"
android:layout_weight="20"
android:orientation="vertical">

<TextView
android:layout_width="fill parent"
android:layout_height="odp"

CHAPTER 9: Currencies Lab: Part 1

android:
android:
android:
android:
android:
android:

<Spinner

android:
android:
:layout_height="o0dp"
android:
android:
android:
android:

android

<TextView

android:
android:
android:
android:
android:
android:
android:
android:
android:

</Linearlayout>

<LinearlLayout

layout_marginLeft="10dp"
layout_marginRight="10dp"
layout_weight="30"
gravity="bottom"
text="Home Currency"
textColor="#ff22e9ff"/>

id="@+id/spn_hom"
layout_width="fill parent"

layout_marginLeft="10dp"
layout_marginRight="10dp"
layout_weight="55"
gravity="top"/>

layout_width="fill parent"
layout_height="o0dp"
layout_marginleft="10dp"
layout_marginRight="10dp"
layout_weight="15"

gravity="bottom"

text="Calculated result in home currency:"
textColor="#666"

textSize="12sp"/>

android:layout width="fill parent"
android:layout_height="odp"
android:layout_marginLeft="10dp"
android:layout_marginRight="10dp"
android:layout_weight="20"
android:background="#222">

<TextView

android:
android:
android:
android:
android:
android:
:background="#333"
android:
android:
android:

android

</Linearlayout>

</LinearlLayout>

id="@+id/txt_converted"
layout_width="fill parent"
layout_height="50dp"
layout_gravity="center vertical"
layout_marginLeft="5dp"
layout_marginRight="5dp"

gravity="center_vertical"
textSize="30sp"
typeface="normal"/>

Once you've created this layout, press Ctrl+K | Cmd+K and commit with a message of
Modifies activity_main layout.

251

252 CHAPTER 9: Currencies Lab: Part 1

Defining Colors

As you examine the XML source code in Listing 9-1, notice that we’ve hard-coded such
properties as textColor and background. It’s a good idea to externalize color values to a
resource file, particularly when colors are repeated. Once you externalize a color, you can
then change that color throughout the entire application by simply changing one value in

a resource file. In Chapter 5, we showed you how to create color definitions using IntelliSense.
Here, we will begin with the color definitions and replace the hard-coded values. Use whichever
method is easiest for you. Right-click (Ctrl-click on Mac) the res/values directory and choose
New » Values resource file. Name the file colors and click OK. If prompted to add the file

to Git, select the Remember, Don’t Ask Again check box and select Yes. Modify the colors.xml
file as in Listing 9-2.

Listing 9-2. Define Some Colors in colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<color name="white">#FFF</color>
<color name="black">#000</color>

<color name="grey very dark">#111</color>
<color name="grey dark">#222</color>
<color name="grey med dark">#333</color>
<color name="grey med">#666</color>
<color name="grey light">#AAA</color>

<color name="turquoise">#ff22e9ff</color>
<color name="flat blue">#ff1a51f4</color>

</resources>

In Android, colors are expressed in hexadecimal digits. Hexadecimal digits may use the
following alphanumeric values: 0, 1, 2, 3,4, 5,6,7, 8,9, A, B, C, D, E, and F. The decimal and
hexadecimal digits for 0 through 9 are identical, but to express 10, 11, 12, 13, 14, and 15

in hexadecimal, you use A, B, C, D, E, and F, respectively. The hexadecimal digits are not
case sensitive, so F is the same as f.

In Android, you can express colors in one of four formats: #ARGB, #RGB, #AARRGGBB,

or #RRGGBB; each letter is a hexadecimal digit. The #ARGB format stands for Alpha, Red,
Green, Blue channels, and Alpha is the transparency channel. The number of possible colors
in this color scheme is 16 possible transparency values multiplied by 16x16x16 possible
color combinations. The #RGB format stands for Red, Green, Blue, and the Alpha channel

is automatically set to fully opaque. The #AARRGGBB and #RRGGBB formats use 8-bit
channels rather than the 4-bit channels used in #ARGB and #RGB formats. The number of
possible color combinations in the #AARRGGBB format is 256 possible transparency levels
multiplied by 256x256x256 possible color combinations. The #RRGGBB format is similar to
the former, only the transparency level is automatically set to fully opaque.

http://dx.doi.org/10.1007/9781430266013_5

CHAPTER 9: Currencies Lab: Part 1 253

The <color name="grey med">#666</color> entry in our colors.xml file uses the #RGB
format. Obviously, a color with equal amounts of Red, Green, and Blue will be gray.

The <color name="turquoise">#ff22e9ff</color> entry in our colors.xml file uses the
#AARRGGBB format. We can see that our turquoise is defined with a lot of Blue and Green,
and very little Red. If we click any color swatch in the gutter of any XML file, we can see

a dialog box that allows us to define whatever color we want, though the string returned
from the Choose Color dialog box will always be in the most precise format, #AARRGGBB.
See Figure 9-10. Once you’ve defined your colors, press Ctrl+K | Cmd+K to commit with a
message of Defines some colors.

1 |

af2s R[4 | o223] sfss | [arcsfiRe _
>

"

V|

. = |

Figure 9-10. The Choose Color dialog box

Applying Colors to Layout

Now that you’ve defined your colors in the colors.xml file, you can apply them to your layout.
One way to do this is to use the Find/Replace functionality of Android Studio. See chapter 5
for an alternative way to create color values. Open the activity main.xml and colors.xml
files as tabs in the Editor. Right-click (Ctrl-click on Mac) the colors.xml tab and select Move
Right so that you can see both files side-by-side. Place your cursor in the the activity main.
xml tab and press Ctrl+R | Cmd+R. In the Find field type #FFF and in the Replace field type
@color/white. Select the Words check box and then click Replace All. Repeat this step for all
the colors we’ve defined except flat_blue, which we will use later. You can see this process
illustrated in Figure 9-11. Once you’ve applied your colors, press Ctrl+K | Cmd+K to commit
with a message of Applies colors to layout. Close then colors.xml tab.

http://dx.doi.org/10.1007/9781430266013_5

254 CHAPTER 9: Currencies Lab: Part 1

purua oo upp v Lo e = wpuIUYY T T uLuTILy_Jpiusinanin T e M AT Y I IR T = uwu

Q.- #000| 4+ 4 [I = [Match Case [Reaex (V] Words [] Preserve Case [In Selection
@3 @color/black ;u . Replace Replace all | Exclude

il <7xml version="1.0" encoding="utf-8"2>

2!\ J<LinearLayout xmins:android="http://schemas.android.com/apk/res/android"”

3 android:layout width="fill parent"

4 android:layout height="fill parent”

s n anclroicﬁ:backgroundf'"

Figure 9-11. Replacing hard-coded color values with named references in the colors.xml file

Creating and Applying Styles

Styles can greatly improve your productivity. A small investment in creating styles in
the short term will likely save you a lot of time in the long term, and also provide a lot of
flexibility. In this section, we’re going to create styles for some of the views in the
activity main.xml layout and show you how to apply them.

The layout we’re using lends itself to styles because many properties are duplicated across
views. For example, the two turquoise-colored TextView controls share all of the same
properties except text. We can extract these duplicated properties into a style and then
apply that style to the appropriate TextView elements. Should we want to change the style
later, we would simply change the style once, and all the views that use that style will also
change. Styles are useful, but there’s no reason to get style-happy and apply styles to all
of your views. For example, it doesn’t make much sense to create a style for the Calculate
button because there’s only one of them.

Our first task is to create styles for the labels (TextViews) used in the activity main.xml
layout. Place your cursor anywhere inside the definition of our first TextView —the one with a
text property of Foreign Currency. From the main menu, choose Refactor » Extract » Style.

In the Extract Android Style dialog box, make the check box selections shown in Figure 9-12.
Type label in the Style Name field. Make sure the Launch check box is selected and click
OK. In the subsequent Use Style Where Possible dialog box, shown in Figure 9-13, select
the File radio button and then click OK. Now click Do Refactor (located along the bottom of
the IDE) in the Find tool window to apply this style to the three other views that share these
properties.

CHAPTER 9: Currencies Lab: Part 1 255

Style name: | labe| J |

[V Launch 'Use Style Where Possible' refactoring after the style is extracted
Attributes:

E layout_width [fill_parent]
[layout_height [0dp]

) layout_marginLeft [10dp]
[V layout_marginRight [10dp]
[layout_weight [20]

g gravity [bottom)]

[textColor [@color/turquaise]

K [oo |

Figure 9-12. Extracting the style called label

Choose a scope where to search possible applications of style ‘label’

(O Whole project

(®) Eile ‘activity_mainxml’

N (o)

Figure 9-13. The Use Style Where Possible dialog box

One of the best properties of styles is that they can inherit from a parent style defined by you

or the Android SDK. With your cursor still inside the same definition of the same TextView
control, choose Refactor » Extract » Style once again.

You will notice that the style name offered to you begins with label.. The dot after label
means that this new style will inherit from its parent called 1label. Name the style label.curr,
as shown in Figure 9-14, and click OK. Again, click Do Refactor.

Style name: | label.curr

[¥] Launch 'Use Style Where Passible' refactoring after the style is extracted
Attributes:

(¥ layout_weight [30]
@ tedColor [@color/turqueise]

&
0

Figure 9-14. Extracting the style called label.curr

256 CHAPTER 9: Currencies Lab: Part 1

In the activity main.xml file, navigate to the TextView with a label of Enter foreign
currency amount here:. Place your cursor anywhere inside the brackets of this view
definition and from the main menu, choose Refactor » Extract » Style. Android Studio is
smart enough to realize that text will likely not be repeated and omits it from the Extract
Android Style dialog box. Rename this style label.desc and click OK, as shown in Figure 9-15.
Again, click Do Refactor along the bottom of the IDE to apply the style to the second
occurrence of this TextView.

Style name: _Fabel,desd_

[¥] Launch 'Use Style Where Possible' refactoring after the style is extracted

Attributes:

[layout_weight [15]]
(V] tetColor [@color/grey_med] o
(V) textSize [12:p]

Kl | o
Figure 9-15. Extracting the style called label.desc

Let’s create one more style for the layout to provide the gray background for both the input
field and the output field. Place your cursor anywhere inside the definition of the LinearLayout
with a background of @color/grey dark. From the main menu, choose Refactor » Extract »
Style. Call your new style layout_back, as shown in Figure 9-16, and click OK.

Style name: leyout_back
[V Launch 'Use Style Where Possible' refactoring after the style is extracted
Attributes:

) layout_width [fill_parent] =
E layout_height [0dp]
(¥ layout_marginLeft
l?l layout_marginRight [10dp]

E layout_weight [20]

E background [&color/grey_dark]

Figure 9-16. Extracting the style called layout_back

Select the File radio button from the Use Style Where Possible dialog box and click OK.
Now click Do Refactor to apply the style to the second occurrence of the layout.

Press Ctrl+Shift+N | Cmd+Shift+O, type styles, and select the res/values/styles.xml

file to open it as a tab in the Editor. You should end up with something that looks a lot like
Figure 9-17. Press Ctrl-K | Cmd+K to commit with a message of Creates and applies styles
to layout.

CHAPTER 9: Currencies Lab: Part 1

<style name="label">
<item name="android:layout width">fill parent</item>
<item name="android:layout height">0dp</item>
<item name="android:layout marginlLeft">10dp</item>
<item name="android:layout marginRight">10dp</item>
<item name="android:gravity">bottom</item>

</style>

<style name="label.curr">

<item name="android:layout weight">30</item>

<item name="android:textColor">@color/turquoise</item>
</style>

<style name="label.desc">
<item name="android:layout weight">15</item>
<item name="android:textColor">@color/grey_med</item>
<item name="android:textSize">12sp</item>

</style>

<style name="layout back">
<item name="android:layout width">fill parent</item>
<item name="android:layout height">0dp</item>
<item name="android:layout marginLeft">10dp</item>
<item name="android:layout marginRight">10dp</item>
<item name="android:layout weight">20</item>
<item name="android:background">@color/grey dark</item>
</style>

Figure 9-17. Styles created automatically for you in the styles.xml file

Creating the JSONParser Class

To read data from the openexchangerates.org web service, we need a way to parse JSON.

JSON, which stands for JavaScript Object Notation, has become the de facto standard

format for web services. We’ve created our own JSON parser called, aptly enough,
JSONParser. This class uses the DefaultHttpClient to fill an InputStream, a BufferedReader
to parse the data, and a JSONObject to construct and return a JSONObject. While this sounds
complicated, it’s pretty simple. By the way, we’re not the only ones to have come up with a
JSON parser; if you search your favorite search engine for JSON parser, you will find dozens
of implementations of this basic pattern.

257

Explaining how JSONParser works in detail is beyond the scope of this book. Nevertheless,
please add this class to your project as we will need its functionality throughout. Right-click

(Ctrl-click on Mac) the com.apress.gerber.currencies package and choose New » Java

Class. Name your class JSONParser. Type (or copy and paste) the code in Listing 9-3 inside

this class.

http://openexchangerates.org

This book was purchased by tanakasy@fukuoka-edu.ac.jp

258

CHAPTER 9: Currencies Lab: Part 1

Listing 9-3. The JSONParserjava Code

package com.apress.gerber.currencies;

import
import
import
import
import
import
import
import
import
import
import
import
import

andr
org.
org.
org.
org.
org.
org.
org.

Jjava.
java.
java.
java.
java.

oid.util.log;

apache.http.HttpEntity;
apache.http.HttpResponse;
apache.http.client.ClientProtocolException;
apache.http.client.methods.HttpPost;
apache.http.impl.client.DefaultHttpClient;
json.JSONException;

json.JSONObject;

io.BufferedReader;

io.IOException;

io.InputStream;

io.InputStreamReader;
io.UnsupportedEncodingException;

public class JSONParser {

static InputStream sInputStream = null;
static JSONObject sReturnJsonObject = null;
static String sRawJsonString = "";
public JSONParser() {}
public JSONObject getJSONFromUrl(String url) {
//attempt to get response from server
try {

DefaultHttpClient httpClient = new DefaultHttpClient();
HttpPost httpPost = new HttpPost(url);

HttpResponse httpResponse = httpClient.execute(httpPost);
HttpEntity httpEntity = httpResponse.getEntity();
sInputStream = httpEntity.getContent();

} catch (UnsupportedEncodingException e) {

e.printStackTrace();

} catch (ClientProtocolException e) {

e.printStackTrace();

} catch (IOException e) {

}

e.printStackTrace();

//read stream into string-builder
try {

BufferedReader reader = new BufferedReader(new InputStreamReader(
sInputStream, "iso-8859-1"), 8);
StringBuilder stringBuilder = new StringBuilder();
String line = null;
while ((line = reader.readlLine()) != null) {
stringBuilder.append(line + "\n");
}

CHAPTER 9: Currencies Lab: Part 1

sInputStream.close();

sRawJsonString = stringBuilder.toString();
} catch (Exception e) {

Log.e("Error reading from Buffer:
}

try {

sReturnJsonObject = new JSONObject(sRawJsonString);
} catch (JSONException e) {

Log.e("Parser", "Error when parsing data " + e.toString());
}

//return json object
return sReturnJsonObject;

}

After you’ve typed or pasted the preceding code, press Ctrl+K | Cmd+K to commit your

changes with a commit message of Creates JSONParser class.

Creating Splash Activity

259

+ e.toString(), this.getClass().getSimpleName());

In this section, we’re going to create the splash activity. The function of this activity is to buy us
about a second of time in order to fetch the active currency codes. While the background thread
is doing its work, we’re going to display a photo of currencies. If this were a commercial app, we

would probably display an image with the company’s logo and perhaps the name of the app.

Right-click (Ctrl-click on Mac) the com.apress.gerber.currencies package and choose

New » Activity » Blank Activity. Name your Activity SplashActivity and select the
Launcher Activity check box, as shown in Figure 9-18.

Creates a new blank activity with an action bar.

N

Layout Name: [activity_splash

Title: [splashActivity

Menu Resource Name: [menu_splash

(V] Launcher Activity

Hierarchical Parent: n D

Package name: | com.apress.gerber.currencies n

Blank Activity

Figure 9-18. New > Activity » Blank Activity to create SplashActivity

260 CHAPTER 9: Currencies Lab: Part 1

In the newly created SplashActivity.java file, modify the class definition so

that SplashActivity extends Activity rather than ActionBarActivity. Also insert
this.requestWindowFeature(Window.FEATURE_NO TITLE); in the onCreate() method,
as shown in Listing 9-4 and resolve imports.

Listing 9-4. Modify the SplashActivity Class to Extend Activity and Remove the Title Bar

public class SplashActivity extends Activity {

@0verride
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
this.requestiindowFeature(Window.FEATURE_NO_TITLE);
setContentView(R.layout.activity_splash);

Press Ctrl+Shift+N | Cmd+Shift+O and type And. Select and open the app/src/main/
AndroidManifest.xml file. Modify the file so that it looks like Listing 9-5.

Listing 9-5. Modified AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.apress.gerber.currencies" >

<uses-permission android:name="android.permission.INTERNET"></uses-permission>

<application

android:allowBackup="true"

android:icon="@android:color/transparent”

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity
android:icon="@mipmap/ic_launcher"
android:name=".MainActivity"
android:label="@string/app_name" >

</activity>
<activity
android:name=".SplashActivity"
android:label="@string/title activity splash">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

CHAPTER 9: Currencies Lab: Part 1 261

The uses-permission line we added to our AndroidManifest.xml file allows the app to gain
access to the Internet. In addition, we’ve set the icon property of the app itself to transparent
to ensure that nothing is displayed prior to SplashActivity. Notice that SplashActivity

now contains the main/launcher intent-filter, rather than MainActivity. The main/launcher
intent-filter tells the Android OS which activity will be launched first.

We need to get some royalty-free artwork to display on our splash screen. Point

your browser to google.com/advanced_image search. In the All These Words field,

type currencies. In the Usage Rights field, select Free to Use, Share or Modify, Even
Commercially. Click Advanced Search. Find an image that you like and download it. Name
the image world_currencies.jpg (or world_currencies.png if the file is a PNG). Copy and
paste world_currencies.jpg into the res/drawable directory located in your Project tool
window. Modify the activity splash.xml file so that the result looks like Listing 9-6.

Listing 9-6. Modified activity_splash.xml File to Display world_currencies as Background

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:background="@drawable/world currencies"
android:orientation="vertical">
</LinearlLayout>

Press Ctrl+K | Cmd+K to commit with a message of Creates splash activity and makes it
the launched activity.

Fetching Active Currency Codes as JSON

In the previous section, you made SplashActivity the activity that is launched first and
modified its layout to display the world currencies image. In this section, you’ll modify
SplashActivity to fire a background thread in order to fetch the active currency codes from
openexchangerates.org/api/currencies.json.

Press Ctrl+N | Cmd+O, type Spl, and select the SplashActivity.java file. There are no
menus in our SplashActivity, so we can remove those methods that refer to menus.
Remove both the onCreateOptionsMenu() and onOptionsItemSelected() methods.

We need to create an AsyncTask, which we will call FetchCodesTask, as a private inner class
of SplashActivity.java. AsyncTask is a class designed expressly to facilitate concurrent
(threaded) operations in Android. We discuss the architecture of AsyncTask in Chapter 10,
so in the meantime just take it on faith that AsyncTask works.

Start by defining FetchCodesTask as a private inner class of your SplashActivity.java class
underneath the onCreate() method, like so:

private class FetchCodesTask extends AsyncTask<String, Void, JSONObject> {

}

http://www.google.com/advanced_image_search
http://openexchangerates.org/api/currencies.json
http://dx.doi.org/10.1007/9781430266013_10

262 CHAPTER 9: Currencies Lab: Part 1

Resolve any imports by placing your cursor on the red text and then pressing Alt+Enter and
selecting Import Class, as shown in Figure 9-19.

7 T Private class FecchCodesTash extends AsyncTaskeString, Void, JSONObject> |

» Import Class
T| § Create Class JSONObject’
1| @ Create Enum JSONOEject’
@ Create Inner Class JSONObject’
¥ Create Interface JSONObject’

Create Subclass *
Create Test L
7 Make ‘protected’ r
Make ‘public’ »
Make package-local 3

Figure 9-19. Resolving JSONObject and AsyncTask imports

Even after you resolve these imports, the class definition should be underlined in red,
indicating that there are compile-time errors. Place your cursor inside this new inner class
definition, press Alt+Insert | Cmd+N, and select Override Methods. In the resulting dialog
box, select both the doInBackground() and onPostExecute() methods by holding down your
Ctrl key (Cmd key on Mac) and clicking OK, as shown in Figure 9-20.

© android.os.AsyneTask
m 6 AsyncTask()
w) 7 dolnBackground(params:Params...):Result
™ 7 onPreExecute(void

@ ¥ onPostExecute(result:Result):void

7 onPreg Ipdate(values:P: Jvoid

m
m T onCancelled(result:Result)veid
m 7 onCancelled(:void
© java.lang.Object
m 7 _clanel:Obisct

(] Copy JavaDoc

) Insert @Qverride K3 | o

Figure 9-20. Selecting dolnBackground and onPostExecute methods

Notice that your methods parameters are defined according to the generics you included
in the inner class definition. Modify your SplashActivity.java class so that it ends up like
Listing 9-7 and resolve any imports.

Listing 9-7. Modify the SplashActivity.java file

public class SplashActivity extends Activity {
//url to currency codes used in this application
public static final String URL_CODES = "http://openexchangerates.org/api/currencies.json";
//Arraylist of currencies that will be fetched and passed into MainActivity
private Arraylist<String> mCurrencies;

CHAPTER 9: Currencies Lab: Part 1

@0verride
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
this.requestWindowFeature(Window.FEATURE_NO_TITLE);
setContentView(R.layout.activity splash);

new FetchCodesTask().execute(URL_CODES);

}

private class FetchCodesTask extends AsyncTask<String, Void, JSONObject> {

@0verride

protected JSONObject doInBackground(String... params) {
return new JSONParser().getJSONFromUrl(params[0]);

}

@0verride
protected void onPostExecute(JSONObject jsonObject) {

try {
if (jsonObject == null) {
throw new JSONException("no data available.");
}

Iterator iterator = jsonObject.keys();
String key = "";
mCurrencies = new Arraylist<String>();
while (iterator.hasNext()) {
key = (String)iterator.next();
mCurrencies.add(key + " | " + jsonObject.getString(key));
}
finish();

} catch (JSONException e) {

Toast.makeText (
SplashActivity.this,
"There's been a JSON exception:
Toast.LENGTH_LONG

+ e.getMessage(),

).show();

e.printStackTrace();
finish();

263

264 CHAPTER 9: Currencies Lab: Part 1

Set a breakpoint at the line mCurrencies.add(key + " | " + jsonObject.getString(key));
by clicking in the gutter next to that line. Click the Debug button in the toolbar (the button
that looks like a bug). Wait while the project builds and loads in the Debugger. When the
breakpoint is met, click the Resume button (the green right-arrow in the Debug tool window)
a few times. If you toggle open mCurrencies inside the Debug window, you will notice

that the values are being fetched in no particular order. See Figure 9-21. In the Debugger
window, click the stop button which looks like a red square. Now that we’re satisfied that
the values are being fetched properly, press Ctrl+K | Cmd+K to commit with a message of
Fetches codes as json from openexchangerates.org.

z 48 lterator 1terator = jsonUbject.keys();
=] drawable-xhdpi : 3
L String key =
[=] drawable-xchdpi 50 mCurrencies = new ArrayList<String>():
Ea layout 51 while (iterator.hastext()) {
o activity_mainxml 52 key = (Sctring)iterator.next{):
= activity_splashaxml 53; & ---- mCurrencies.add (key " | " + jsonObject.getStri
=] menu o4 !
B 55
T values 56 finish();
= colors.xml 7
E! dimens.xml 58 } catch (JSONException e) {
Debug '%' app
- = | r® =
Ga Debugger [E Console = @ Logcat =" = (e & % o
[% Frames++ QI Threads - = Variables
B "<1> main"@®830.... |—, + 7T = this = {com.apress.gerber.currencies.SplashActivitySFetchCodesTask@830034610112}
[] | S—
] - — e nr Py Yen™ "CNY™"Chi Yuan® "
i1 onPostExecute():53, SplashActivitySFet ; :jSGnObJECt {*) Japanese Yen",“CNY":"Chinese Yuan®,
8B = iterator = {java.util. HashMapSKeylterator@830035101840}
“ S — - -
g ® K - key = TTD
g i do” mCurrencies = size=4
"
Y - -
&l B} | JPY | Japanese Yen
* E B “CNY | Chinese Yuan"
& “UGX | Ugandan Shilling"
% — i “RON | Romanian Leu™
=
S| %
Z |

Figure 9-21. Debug window inspecting mCurrencies frame by frame

Launching MainActivity

In the previous section, you successfully fetched the active currency codes by using
an AsyncTask. Now you need to launch the MainActivity and pass the active currency
codes to it.

Android’s software architecture is extremely open and modular. Modularity is a blessing
because we can integrate any number of third-party apps into our own. However, modularity
is also a curse because these other apps do not share the same memory space, and
therefore we can’t simply pass object references around. Android enforces this modularity
by creating a Chinese wall around every activity through which no object reference may
pass. The pass-by-value-only rule applies equally to inter-app communication as it does to
intra-app communication. Even though our SplashActivity and MainActivity are located

in the same package of the same app, we must still serialize any communication between

CHAPTER 9: Currencies Lab: Part 1 265

these two components as if each activity were located on different servers; that is the price
we pay for developing with an open and modular software architecture.

Passing data by value is facilitated through the use of a specialized class in Android

called Intent. Intents are messages that are dispatched to the Android OS. You cannot
send an intent directly from one activity to another; the Android OS must always mediate
communication between activities and this is why your activities must always be listed in
your AndroidManifest.xml file. An intent may also have a payload known as a bundle.

A bundle is a map of key/value pairs, where the keys are strings and the values are either
Java primitives or serialized objects. Once an intent’s bundle is fully loaded with data, the
intent can be dispatched to the Android OS, which delivers the intent and its payload to the
destination activity.

The data we’d like to pass from SplashActivity to MainActivity is just a list of strings.
Fortunately, ArrayList<String> already implements the Serializable interface, so we
can just put the mCurrencies object into the bundle of an intent with a destination of
MainActivity and dispatch that intent to the Android OS. Open the SplashActivity.java
file. After the while loop block, place the three lines of code shown in Figure 9-22.

mCurrencies.add(key + " | " + jsonObject.getString(key)):
} :
Intent mainIntent = new Intent(SplashActivity.this, MainActivity.class);
mainIntent.putExtra("key arraylist”, mCurrencies);
startActivity(mainIntent);
finish():

Figure 9-22. Create and dispatch Intent

Resolve imports as necessary. In the first new line of code in Figure 9-22, we are constructing
an intent and passing a context (SplashActivity.this) and a destination activity
(MainActivity.class). The next line adds the mCurrencies object to the bundle of our intent
with a key of "key arraylist". The last line, startActivity(mainIntent);, dispatches the
intent to the Android OS, which is then responsible for finding the destination and delivering
the payload.

Place your cursor on key_arraylist and press Ctrl+Alt+C | Cmd+Alt+C to extract a constant.
Select SplashActivity as the class in which the constant will be defined, as shown in
Figure 9-23, and select KEY_ARRAYLIST from the suggestions list and press Enter to create a
constant in this class.

266 CHAPTER 9: Currencies Lab: Part 1

i

Inctent mainIntent = new Intent(Splashhctivicy.this, MainRctivity.class);
mainIntent.putExtra("key_arraylist", mCurrencies);
startActivity(mainlatent); Choose class to introduce constant

€ FetchCodesTask in SplashActivity (com.apress.gerber.currencie o
finish(): @ SplashActivity (com.apress.gerber.currencies) \h app O3

Figure 9-23. Select SplashActivity to be the class in which constant will be defined

Press Ctrl+K | Cmd+K and commit with a message of Fires-up MainActivity with Intent
and passes ArrayList into Bundle.

Summary

In this chapter, we described the Currencies app specification and proceeded to implement
some of its features. We defined layouts, extracted colors, and created and applied styles.
We also covered JSON and created a splash screen to fetch active currency codes that are
required to populate the spinners of the main activity. We introduced AsyncTask and fetched
JSON data from a web service. We also used an intent to communicate between activities.
In the next chapter, we will complete the Currencies app.

Chapter

Currencies Lab: Part 2

In the previous chapter, you fetched the active currency codes by using an AsyncTask

in the SplashActivity. You loaded the currency codes into a bundle and attached that
bundle to an intent with a destination of MainActivity. Finally, you dispatched the intent to
the Android OS.

In this chapter, you’ll continue to develop the Currencies app and focus exclusively on the
functionality of MainActivity to complete the app. You’ll use an ArrayAdapter to bind an
array of strings to spinners. You’'ll use Android Studio to delegate the handling of views’
behavior to the enclosing activity. You’ll also learn how to use the shared preferences

as well as assets. You’ll learn about concurrency in Android and specifically how to use
AsyncTask. Finally, you’ll modify the layout and use Android Studio to generate drawable
resources.

Define Members of MainActivity

Let’s begin by defining references in the MainActivity class that correspond to the

views in the activity main.xml layout file and then assigning objects to them. Open the
MainActivity.java and activity main.xml files so you can refer to both. Right-click
(Ctrl-click on Mac) the activity _main.xml tab and select Move Right and change the mode
of activity_main.xml to Text. Modify your MainActivity. java file so it looks like Figure 10-1
and resolve any imports by pressing Alt+Enter as necessary.

267

This book was purchased by tanakasy@fukuoka-edu.ac.jp

268 CHAPTER 10: Currencies Lab: Part 2

public class MainActivity extends ActionBarActivity {

//define members that correspond to Views in our layout
private Button mCalcButton;

private TextView mConvertedTextView;

private EditText mAmountEditText;

private Spinner mForSpinner, mHomSpinner;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

//assign references to our Views

mConvertedTextView = (TextView) findViewById(R.id.txt converted):
mAmountEditText = (EditText) findViewById(R.id.edt_amount):
mCalcButton = (Button) findViewById(R.id.btn_calc):

mForSpinner = (Spinner) findViewById(R.id.spn for):

mHomSpinner = (Spinner) findViewById(R.id.spn hom);

}

Figure 10-1. Define members and assign references to these members

Notice that we’re defining references in MainActivity for only those views in activity main.xml
for which we had previously assigned an ID. The setContentView(R.layout.activity main);
statement inflates the views contained in activity main.xml. In Android, the world inflate
means that as Android traverses the views defined in the activity main.xml layout, Android
will instantiate each view as a Java object on the heap. If that View object has an ID, Android
will associate that object’s memory location with its ID. This association may be found in an
autogenerated file called R. java, which functions as a bridge between your resources and
your Java source files.

Once the layout and all its views have been inflated into memory space, we can assign
these objects to the references we defined earlier by calling the findViewById() method

and passing an ID. The findViewById() method returns a View object that is the hierarchical
ancestor of all Views and ViewGroups in Android; and this is why we need to cast each call to
findViewById() to the appropriate View subclass. Press Ctrl+K | Cmd+K and commit with a
message of Gets references to views defined in layout.

Unpack Currency Codes from Bundle

In the preceding chapter, we passed an ArraylList of Strings into the bundle of the intent
that was used to launch MainActivity. Although the Android OS has successfully delivered
its payload, we still need to unpack it. The data structure we used in SplashActivity was
a vector (ArrayList<String>), which means that it can grow and shrink as necessary. The
data structure we’re going to use for storing active currency codes in MainActivity will be
a simple array of strings whose length is fixed. The reason for changing data structures

is that we’re going to use ArrayAdapter as controllers for our spinners and ArrayAdapter
uses arrays, not ArraylLists. Modify the MainActivity class so it looks like Figure 10-2 and
resolve any imports as necessary.

CHAPTER 10: Currencies Lah: Part 2 269

private EditText mAmountEditText;
private Spinner mForSpinner, mHomSpinner;
private String[] mCurrencies;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.activity main);

//unpack ArrayList from the bundle and convert to array
ArraylList<String> arraylist = ((ArrayList<String>)

getIntent() .getSerializableExtra(SplashActivity.KEY ARRAYLIST)):
Collections.sort(arrayList);
mCurrencies = arraylList.toArray(new String[arraylList.size()]):

Figure 10-2. Unpack currency codes from ArrayList

The statement ArrayList<String> arraylList = ((ArraylList<String>) getIntent().getS
erializableExtra(SplashActivity.KEY_ARRAYLIST)); is unpacking the ArrayList<String>
from the bundle of the intent that was used to launch this activity. Notice that we are

using the same public constant as a key (SplashActivity.KEY ARRAYLIST) for unpacking

the Arraylist<String> in MainActivity that we previously used for packing the
Arraylist<String> in SplashActivity. Also notice that we are using the Collections interface
to sort the data, and then we convert the ArraylList<String> to an array of strings. Press
Ctrl+K | Cmd+K and commit with a message of Unpack currency codes from Bundle.

Create the Options Menu

The New Project Wizard created a menu for us called menu_main.xml. Press Ctrl+Shift+N |
Cmd+Shift+0O, type main, and select res/menu/menu_main.xml to open it. Modify
menu_main.xml so it looks like Listing 10-1.

Listing 10-1. Modify the menu_main.xml File

<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
tools:context=".MainActivity">
<item
android:id="@+id/mnu_codes"
android:orderInCategory="100"
app:showAsAction="never"
android:title="search active codes"/>

270 CHAPTER 10: Currencies Lab: Part 2

<item
android:id="@+id/mnu_invert"
android:orderInCategory="200"
app:showAsAction="never"
android:title="invert codes"/>

<item
android:id="@+id/mnu_exit"
android:orderInCategory="300"
app:showAsAction="never"
android:title="exit"/>

</menu>

The app:showAsAction property determines the location of the menu item. Setting this
property to never means that this menu item will never appear on the action bar and always
appear in the overflow menu. The overflow menu is represented by three vertical dots on the
right side of the action bar.

The android:orderInCategory is used to set the order of the menu item. The convention in
Android is to use multiples of 100 so, for example, we can use 250 to insert a new menu
item between 200 and 300, and 225 to insert a new menu item between 200 and 250. The
orderInCategory property value must be an integer, so had we started with sequential values
such as 2 and 3, there would have been no room to insert intermediate values and we would
have been compelled to reorder the entire set.

Notice that we are assigning an ID to each of our menu items so we can reference
these objects in our Java code later. Open MainActivity.java and change the
onOptionsItemSelected() method as shown in Listing 10-2.

Listing 10-2. Modify the onOptionsltemSelected() Method

public boolean onOptionsItemSelected(MenuItem item) {
int id = item.getItemId();
switch (id){

case R.id.mnu_invert:
//T0D0 define behavior here
break;

case R.id.mnu_codes:
//TODO define behavior here
break;

case R.id.mnu_exit:
finish();
break;

}

return true;

CHAPTER 10: Currencies Lah: Part 2 21

Notice that we’ve put TODOs in place of implementation code with the exception of the Exit
menu item. We will implement the remaining options menu items’ functionality in the next
step. Press Ctrl+K | Cmd+K and commit with a message of Creates options menu.

Implement Options Menu Behavior

In this section, we’re going to write code that requires permissions. If you’re an Android user,
then you’re probably familiar with the litany of permissions to which you must agree prior

to installing an app. Some apps require more permissions than others, but most require at
least one. In an earlier step, we requested permission from the user to access the Internet.

In this step, we’re going to request permission from the user to gain access to the network
state of the device. It’s easy to overlook permissions, particularly if you're a rookie Android
programmer. Fortunately, if you forget to include the appropriate permissions, the exceptions
related to this problem are straightforward.

To open the AndroidManifest.xml file, press Ctrl+Shift+N | Cmd+Shift+O, type And, and
press Enter to select AndroidManifest.xml to open it. Modify AndroidManifest.xml to insert
the highlighted line in Figure 10-3.

<uses-permission android:name="android.permission.INTERNET"></uses-permission>
<uses-permission android:name="android.permission.ACCESS NETWORE STATE" ></uses-permission>

Figure 10-3. Add permission to access the network state in the AndroidManifest.xml file

Open the MainActivity. java class. Define the three methods in Listing 10-3. The isOnline()
method checks whether the user has Internet connectivity. This method is using the
Android ConnectivityManager, which is why we needed to add the android.permission.
ACCESS_NETWORK_STATE to the AndroidManifest.xml file. The launchBrowser () method takes
a string that represents a uniform resource identifier (URI). A URI is a superset of a uniform
resource locator (URL), so any string defined as a valid HTTP or HTTPS address will work
just fine as an argument. The launchBrowser () method launches the default browser on the
device and opens the URI we pass to it. The invertCurrencies() method simply swaps
the values for the home and foreign currency spinners. Of course, if the TextView containing the
calculated result had previously been populated with data, we also would need to clear it in
order to avoid any confusion. Place your new methods underneath the onCreate() method.

272 CHAPTER 10: Currencies Lab: Part 2

Listing 10-3. Create Three Methods in MainActivity.java

public boolean isOnline() {
ConnectivityManager cm =
(ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = cm.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnectedOrConnecting()) {
return true;
}

return false;

}

private void launchBrowser(String strUri) {

if (isOnline()) {
Uri uri = Uri.parse(strUri);
//call an implicit intent
Intent intent = new Intent(Intent.ACTION VIEW, uri);
startActivity(intent);

}
}

private void invertCurrencies() {
int nFor = mForSpinner.getSelectedItemPosition();
int nHom = mHomSpinner.getSelectedItemPosition();

mForSpinner.setSelection(nHom);
mHomSpinner.setSelection(nFor);

mConvertedTextView.setText("");

}

Replace the TODOs in the onOptionsItemSelected() method of the MainActivity. java file
with method calls per Listing 10-4. Press Ctrl+K | Cmd+K and commit with a message of
Implements options menu behavior and modifies manifest file.

Listing 10-4. Replace TODOs in onOptionsitemSelected() Method with Calls to the Methods We Just Defined

case R.id.mnu_invert:
invertCurrencies();
break;

case R.id.mnu_codes:
launchBrowser(SplashActivity.URL_CODES);
break;

CHAPTER 10: Currencies Lah: Part 2 273

Create the spinner_closed Layout

Create a layout for the spinners when they’re in a closed state. Right-click (Ctrl-click on Mac)
the res/layout directory and choose New » Layout Resource File. Name your file
spinner_closed and click OK, as shown in Figure 10-4.

|| Eile name: spinner_closed
'i >
Root element: LinearLayout
Source set: main

I Directory name: | layout
Figure 10-4. Define the spinner_closed layout resource file

Modify the spinner_closed.xml file as shown in Listing 10-5.

Listing 10-5. Definition of spinner_closed.xml

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:background="@color/grey very dark"
android:textColor="@color/grey light"
android:singleLine="true"
android:textSize="18sp"
android:layout_width="match_parent"
android:layout_height="fill parent"
android:gravity="center vertical"
android:ellipsize="marquee"

/>

Bind mCurrencies to Spinners

Both the home currency spinner and the foreign currency spinner will display the same
items. We need to bind the mCurrencies array to both spinners. To do this, we’ll use a class
called an ArrayAdapter. In the onCreate() method of MainActivity. java, add the code
shown in Figure 10-5 and resolve imports.

274 CHAPTER 10: Currencies Lab: Part 2

/controller: mediates model and viey

ArrayRdapter<String> arrayAdapter = new ArrayAdapter<String>(

this,
out vou see wvhen the spinner 1is ~loead

//viev: layout you see vhen the spinner is closed

R.layout.spinner closed,

madals #ha a atr AT Clhys maes
el: Che arxay ol SLrx gs

mCurrencies

(s aws 1avant van cas wvhen) ERS DAY € SrNEn
fVieV: layouc you see vonen tne spinner 15 open

arrayAdapter.setDropDownViewResource (
android.R.layout.simple spinner dropdown item);

//assign adapters to spinners

mHomSpinner.setAdapter (arrayAdapter):;
mForSpinner.setAdapter (arrayAdapter);

Figure 10-5. Bind mCurrencies to spinners

The ArrayAdapter constructor takes three parameters: a context, a layout, and an array.
The ArrayAdapter acts as the controller in the model-view-controller design pattern and
mediates the relationship between the model and the view. The model in our case is the
array of strings called mCurrencies. Each element in mCurrencies contains a currency

code, a pipe character to provide visual separation, and a currency description. A spinner
has two views: one view that is displayed when the spinner is open and another that is
displayed when the spinner is closed. The last two statements assign the newly constructed
arrayAdapter object to the spinners. Press Ctrl+K | Cmd+K and commit with a message of
Binds data to spinners. Run your app by pressing Shift+F10 | Ctrl+R and interact with both
spinners to ensure that they’re working properly.

Delegate Spinner Behavior to MainActivity

The Java event model is extremely flexible. We can delegate the handling of events to any
object that implements the appropriate listener interface. If a view is unique, such as the
Calculate button, it makes sense to delegate the handling of its behavior to an anonymous
inner class. However, if our layout contains multiple views of the same type, such as two
or more spinners as is the case in the Currencies app, then it’s often easier to delegate the
handling of these views’ behaviors to the enclosing class. Add the two lines of code to the
end of the onCreate() method in MainActivity.java which are shown in Figure 10-6. The
words this will be underlined in red, indicating compile-time errors.

CHAPTER 10: Currencies Lah: Part 2 275

[& % & Ignorewhitespace: [All | Highlight: |Byword ~ | . ? B % 8 8 E

8379¢f025247ec52ad74b2242290... 6Gac2ebcSedbed d910a3cf0a00165422f099b553 (Read-only)
-."ess:;.‘:. 63 63= . //assign adapters to spinners
nHomSpin | 64 &4 HomSpinner.setAdapter (arrayAdapter);
nForSpinE &5 65 mForSpinner.setAdapter (arrayAdapter) ;
| 66| 66 |
67/ " &7 i nHomSpinner.setOnltemSelectedListener (this);
} i e8|\ | 68l pForSpinner. setOnltemSelectedListener (this);
L g9 \ | g9
public boolel | 70/ |\ 70
Connectii | 71 71
1 difference | Deleted | Ch d] d

Figure 10-6. Delegate the behavior of spinners to MainActivity

Place your cursor anywhere on either word this and press Alt+Enter to invoke IntelliSense code
completion. Select the second option (Make ‘MainActivity’ implement ‘android.widget.AdapterView.
OnltemSelectedListener’) as shown in Figure 10-7. Select both methods in the Select Methods to
Implement dialog box, shown in Figure 10-8, and click OK. If you scroll up to the top of the class,
you will notice that MainActivity now implements AdapterView.OnItemSelectedListener.

64 mHomSpinner. setAdapter (arahdapter);
! mForSpinner.setAdapter (arakdapter);

&7 [9 mForSpinner.setOnItemSelectedlListener (this);

@ Cast parameter to ‘android.widget.Adapter\View.OnltemSelectedListener’

72 l/ﬂ }

2@
¥ b androidwidget.AdapterView.OnltemSelectedListener
onlternSelected(parent:AdapterView<7>

w

W

onNothingSelected(parent:AdapterVie

O Copy JavaDoc

[V Insert @Qverride n

Figure 10-8. Select Methods to Implement dialog box

276 CHAPTER 10: Currencies Lab: Part 2

The OnItemSelectedlListener interface has two contracted methods that any implementing
class must override: onItemSelected() and onNothingSelected(). We will not provide

any implementation code in the body of the onNothingSelected() method. Although
onNothingSelected() is a slug, it must appear inside MainActivity to satisfy the interface
contract.

In the onItemSelected() method, we need to determine which spinner was selected by
checking parent.getId(), and then adding some conditional logic to program the selected
spinner’s behavior. Modify the onItemSelected() method as shown in Figure 10-9.

@override
public void onItemSelected (AdapterView<?> parent, View view, int position, long id) {

switch (parent.getld()) {
case R.id.spn for:
Eo
case R.id.spn_hom:
brear

default:
break;

Figure 10-9. Modify the onltemSelected() method

Notice that we’re putting placeholder comments (//define behavior here) where we expect
our implementation code to be. We will implement the spinners’ behavior in the subsequent
step. Press Ctrl+K | Cmd+K and commit with a message of Delegates handling of
spinners’ behavior to MainActivity.

Create Preferences Manager

Shared preferences provide a means to persist the user’s preferences between app quits.

If we attempt to store the user’s preferences in memory, that data would be flushed after

the user quits the app and the app’s memory is reclaimed by the Android OS. To solve this
problem, shared preferences may be stored in a file on the user’s device. This file is a serialized
hash-map with key/value pairs, and each app may have its own shared preferences.

The types of values that you may store in shared preferences are limited to Java primitives,
strings, serialized objects, and arrays of serialized objects. Compared to reading and writing
data to an SQLite database, shared preferences are slow. Therefore, you should not consider
using shared preferences as an alternative for records management; you should always use
an SQLite database for records management as you have seen already in the Reminders lab.
Nevertheless, shared preferences are a great way to persist the user’s preferences.

CHAPTER 10: Currencies Lah: Part 2 277

We’d like to persist the currency codes that are displayed in the home currency and foreign
currency spinners. Here’s a typical scenario. Let’s say that an American user is vacationing in
Istanbul and uses the Currencies app at the souq to wrangle over some precious Byzantine
antiquities. The user quits the app and returns to the hotel. The following morning, he eats
breakfast at a local restaurant and launches the Currencies app to check the bill. It would

be very discouraging if our user had to reselect both TRY and USD in the spinners before
performing another calculation. Instead, the spinners should be populated automatically with
the codes that were previously selected for both home currency and foreign currency.

We’'re going to create a utility class that gives us access to shared preferences. Our utility
class will have public static methods that allow us to get and set the currency codes
selected by the user for both home and foreign currencies. Right-click (Ctrl-click on Mac)
the com.apress.gerber.currencies package and select New Java Class. Name your class
PrefsMgr and insert the code shown in Figure 10-10.

bublic class PrefsMgr |
private static SharedPreferences sSharedPreferences;

public static void setString(Context context, String locale, String code){
sSharedPreferences =
PreferenceManager.getDefaultSharedPreferences (context);
SharedPreferences.Editor editor = sSharedPreferences.edit();
editor.putString(locale, code):;
edivor.commit();

}

public static String getString(Context context, String locale) {
sSharedPreferences =

PreferenceManager.getDefaultSharedPreferences (context);
return sSharedPreferences.getString(locale, null);

1}

Figure 10-10. Create the PrefsMgr class

The setString() method sets the currency code for a particular locale that is either home
or foreign. The getString() method will return the currency code value stored for a particular
locale, and if the code is not found, then null will be returned by default. Press Ctrl+K | Cmd+K
and commit with a message of Creates our own preferences manager.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

278 CHAPTER 10: Currencies Lab: Part 2

Find Position Given Code

A spinner uses zero-based integers to represent the value of its current position. To set a
spinner to a particular code, we need to find the element’s appropriate position or index. Since
mCurrencies is used as the model for the spinners, we can simply compare a currency code
with the first three characters of the aggregate string stored in mCurrencies. If we find a match,
we return the index position. If no match is found, we return to zero, which corresponds to the
first position of the spinner. The ISO 4217 currency codes standard specifies that a currency
code will always be three letters in length. Let’s write a method to extract the three-letter
currency code from the aggregate string that contains the currency code, a pipe character,
and a currency description. We know that the first three characters of this aggregate string will
be the currency code, and so we can use the substring() method of String to extract it.
Open MainActivity.java and define the findPositionGivenCode() method underneath the
invertCurrencies() method as shown in Figure 10-11. Press Ctrl+K | Cmd+K and commit
with a message of Creates find position given code method.

private int findPositionGivenCode (String code, String[] currencies) {

for (int i = 0; i < currencies.length; i++) {
if ((currencies[i]).substring(0, 3).equalsIgnoreCase(code)) {
return i;
}

//default

return 0;

Figure 10-11. Create the findPositionGivenCode() method

Extract Code from Currency

Extracting the three-letter currency code from the aggregate string stored in each element
of mCurrencies will not be limited to the findPositionGivenCode() method. Rather than
duplicate this code elsewhere, it’s a good idea to extract a method and then call this method
as necessary whenever its functionality is required. In MainActivity. java, highlight the code
shown in Figure 10-12 and press Ctrl+Alt+M | Cmd+Alt+M to extract a method and select
the first option.

CHAPTER 10: Currencies Lah: Part 2 279

76 B private int findPositionGi ode (String code, String[] currencies) {
77

78] for (int i = 0: i < currenciesa.length; i++) |

79 I if {.equalslqnore:ase{code); {
80] return i;

81 i }

Figure 10-12. Select the code that will be extracted as a method

Change the name of the method in the Extract Method dialog box to extractCodeFromCurrency,
as shown in Figure 10-13, and click OK. You should end up with something that looks like
Figure 10-14. Press Ctrl+K | Cmd+K and commit with a message of Extracts method called
extractCodeFromCurrency.

Visibility: Name:
private n [adlact(cdeFlomCu!rencyl ‘

[Declare static E Eold parameters || Declare vararg

Parameters

Type MName
™ String ¥ currency

Signature Preview

private String extractCodeFromCurrency(String currency)

n Cancel] Help |

Figure 10-13. Create extractCodeFromCurrency() in the Extract Method dialog box

280 CHAPTER 10: Currencies Lab: Part 2

[@ 4+ ¥+ Ignorewhitespace: [All~ | Highligh [ayunev]. ? B - 4

dmmmo«moamasmmsaum fdbSHSG?HGCWBDQQTGEEébIOIWBM (Read- nnly)
75 75!
private int IimPa: 76 76 private int findPosicicnGivenCode (String code, Scring[] currencies) {
17 77
for (int i = 0| 78 780 | for (int i = 0; i < currencies.length; i++) {
if (({curre 790 179l | if (extractCodeFromCurrency(currencies[i]).equalalgnoreCase(code)) [
Teturn| g0 80 return i;
} &1 el | }
} g2 82 }
default i 23 283 | default
return 0 g4 g4 return 0
} 5 g5 |
i 26 86 |
public boolean ia0) BT % 87| | private String excractCodeFromCurrency(String currency) {
ConnectivityMa; eg \| B8 | return (currency) .substring(d, 3):
{Conne| g9 29 i }
| &0 90| |
2 differences | Deleted | Changed | Inserted

Figure 10-14. Resulting code from the extract method operation

Implement Shared Preferences

The data in shared preferences is stored in a hash-map where the keys are always
strings and so this is a perfect opportunity to define the keys as String constants. Open
MainActivity.java and define the two String constants shown in Figure 10-15.

CAandroi Currencies\ap \con I : = _l:l X
[l ©. © ¥ Ignorewhitespace: |All | Highlight: |Byline . ? B % 8 B E
f4b5219a}‘54dca3?399e?c9}'923e9h101600? 6Ged8bdeael 2d22b3322846201999221a2c77891 (Read-only)

private Spinner mI‘o | 30 30; i private Spinner mForSpinner, mHomSpinner;
a private Stringl] mC: i3 31 private String[] mCurrencies; -
i 32 32i |

1 @override {1 33| \IlIEs | public static final String FOR = "FOR CURRENCY":; |

protected void onCr i 34 \ 34 public static final String HOM = "HOM CURRENCY";

! super.onCreate(, 35 |\ | 35 i

setContentView(: i 36 \l 36 i

1 E 37 370 | @Override L

4 npac. i 38 38 protected void onCreate (Bundle savedInstanceState)’

9 differences | Deleted | Changed Inserted

Figure 10-15. Define two constants that will be used as keys

CHAPTER 10: Currencies Lah: Part 2 281

Insert the if/else block shown in Figure 10-16 at the end of the onCreate() method of your
MainActivity class. In a previous step, we programmed the PrefsMgr class to return null

in the event that a key was not found. The if block checks that both the home currency

and the foreign currency keys do not yet exist. This unique condition will occur only once—when
the app is used for the very first time on the user’s device—and the spinners will be set to
CNY and USD as foreign and home currencies respectively. If that unique condition is not
met, the spinners will be set to the values stored in the user’s shared preferences.

from Sh

//set to shared-preferences or pull from sha

if (savedInstanceState == null
&s (PrefsMgr.getString(this, FOR) == null &s&
PrefsMgr.getString(this, HOM) == null)) {

mForSpinner. setSelection (£indPositionGivenCode ("CNY", mCurrencies));
mHomSpinner.setSelection(findPositionGivenCode ("USD", mCurrencies)):

PrefsMgr.setString(this, FOR, "CNY"):
PrefsMgr.setString(this, HOM, "USD");

} else {

mForSpinner.setSelection (findPositionGivenCode (PrefaMgr.getString(this,
FOR), mCurrencies)):

mHomSpinner.setSelection(findPositionGivenCode (PrefsMgr.getString(this, -
HOM), mCurrencies));

Figure 10-16. Create the if/else block

There is a slight performance hit associated with using shared preferences, and we’d like
to avoid this hit if we can. We include the savedInstanceState == null && inside the
parentheses of our if statement so that this block will short-circuit in the event that
MainActivity is simply recovering from either an interruption or a configuration change.

Navigate to the onItemSelected() method we defined earlier. Modify this method so that we
set the shared preferences each time we select an item in one of the spinners. In addition,
we’re going clear the mConvertedTextView to avoid any confusion. Modify MainActivity.java
as shown in Figure 10-17.

282 CHAPTER 10: Currencies Lab: Part 2

I ©L % & Ignorewhitespace: |All v | Highlight: |Byline v | . ? B %88 E
4b52192754dcad7399e7c97923e9k1.... Ged3bdeael 2d22b33228416a019992a1 2277891 (Read-only)

| 156 185
@override 157 1e6 @override
public void on| 158 187 public void onltemSelected (AdapterView<?> parent, View view, int position, lomg id) {
159 1g8
switch 160 19 switch (parent.getId()) ([
161 180}
case R.id.spn_for:

ca 1621 191

1163 192 | PrefsMgr.setString(this, FOR,
164 193 | extractCodeFromCurrency ((String)mForSpinner.gecSelecteditam())): |
165 194 break;
ca 166 185
| 167 - 1%6 case R.id.spn_hom:
168\ [297] | PrefsMgr.secString(this, HOM,
169 \J298f | extractCodeFromCurrency ({String) mHomSpinner.getSelecteditem())):
de; 170 199 break;
H 171 200
} 172 201 default:
| 73 |202 break;
} | Ja74f Y\ 208 }
175 \ l208] |
@override i 176 \l205 i mConvertedTextView.setTexc (")
public woid on, 177 206
178 207 }
9 differences ——| Deleted . Changed : | Inserted

Figure 10-17. Apply shared preferences to the onltemSelected method

Finally, we need to ensure that the shared preferences are properly set when the user selects
the Invert Currencies menu item from the options menu. Add the two lines of code shown

in Figure 10-18 to the end of the invertCurrencies() method. Press Ctrl+K | Cmd+K and
commit with a message of Implements shared preferences.

[1 ©0 + ¥ Ignorewhitespace: | All ~ | Highlight: | Byline ~ - ? B o»- 8 8 E
f4b5219a754 dca373997 c87923e9b10160073... 6edBbdeael 2d22b332284f620199922122c77891 (Read-only)
120 145
annvertedTextVié 121 146, mConvertedTextView.setText ("");
I b 147
1231\ 148/ | PrefsMgr.setString(this, FOR, extractCodeFromCurrency((String)

\

} 124) \ (148} | mForSpinner.getSelectedItem()))

i 2s| \Hasoi PrefsMgr.setString(this, HOM, extractCodeFromCurrency((String)
@0verride 126| /151 mHomSpinner.getSelectedItem())):
public boolean cnCre 152

// Inflate the m 153,

9 differences | Deleted —| Changed | Inserted

Figure 10-18. Apply shared preferences to the invertCurrencies method

CHAPTER 10: Currencies Lah: Part 2 283

Button Click Behavior

There is only one button in our app. Therefore, it makes sense to delegate the handling of
this button’s behavior to an anonymous inner class rather than to the enclosing activity as
we did earlier with the two spinners.

At the end of the onCreate() method but still within its enclosing braces, type
mCalcButton.setOnClickListener(); Now place your cursor inside the parentheses

of this method and type new On. Use your down-arrow keys if necessary to select the
onClickListener{...} option from the suggestions offered to you by code completion and
press Enter. Add some placeholder text such as //define behavior here in the onClick()
method, as shown in Figure 10-19. Press Ctrl+K | Cmd+K and commit with a message of
Creates anon inner class to handle button behavior.

% CandroidBook\Currencies\app\src\mainijavalcomiap

Ignore whitespace: |All * | Highlight: | By line ~ ? B %

Ged3bdeael 2d22b332284f6201999241... 4ed8531 baffd59538fel be75d05bff3cdbeclb? (Read-only)

g9 g9

mForSpi a0 a0 mForSpinner.setSelection (findPositionGivenCode (PrefaMgr.ge
91 91 FOR), mCurrencies));

mHomSpi 92 92 mHomSpinner.setSelection(findPositionGivenCode (PrefsMgr.ge
a3 93 HOM), mCurrencies)):

} L o4 94 }

85 a5 mCalcButton. setOnClicklistener (new View.OnClickListener() {
96 96 @Override
a7 a7 public void onClick(View v) {
98 98 /de = behavior here

} a9 93 |
100 100 | N:
private int fir 101 101
102 102 }
for (int i 103 103
if (ext 104 104 private int findPositionGivenCode(String code, String[] currencies
ret 105 105
1 1n& 10& Favr link 4 = fis 4 7/ mravvansias Tansarhs a2y T
1 difference | Deleted | Changed Inserted

Figure 10-19. Create an anonymous inner class to handle button click behavior

Store the Developer Key

Right-click (Ctrl-click on Mac) app in the Project tool window and choose New » Folder »
Assets Folder. In the subsequent dialog box, the Target Source Set option should be main by
default. Click Finish.

Right-click the newly created assets directory in the Project tool window and choose
New » File. Name the new file keys.properties, as shown in Figure 10-20.

284 CHAPTER 10: Currencies Lab: Part 2

Enter a new file name:

[keys.prupenieﬂ

Coc I

Figure 10-20. Create the keys.properties file

Add the following line to the keys.properties file:
open_key=9a894f5f4f5742e2897d20bdcac7706a

You will need to sign up for your own free key by navigating your browser to
https://openexchangerates.org/signup/free. This process is easy and takes about 30 seconds.
Replace your own valid key in place of the bogus key we’ve provided here. See Figure 10-21.
Press Ctrl+K | Cmd+K and commit with a message of Defines openexchangerates.org key.

1t Ignore whitespace:
9333bb7ac1d8b46b32662952a876453e59425f5f (Read-only)
LF
1 #ffe folloving key is NOT a valid key.

i#Please sign-up for your ovn key

E#:he: replace the invalid placeholder key belowv wvith your ovn valid key

‘open key=9a894f5f4f5742e2897d20bdcac7706a

1 difference | Deleted | Changed | Inserted

Figure 10-21. Define open_key in the keys.properties file. The key provided here is a placeholder and will not work

Note The key that we’ve provided, 9a894f5f4f5742e2897d20bdcac7706a, will not work; it is
simply a placeholder. You will need to sign up for your own key by navigating your browser to
https://openexchangerates.org/signup/free and then replace the bogus key with your
own valid key.

https://openexchangerates.org/signup/free
https://openexchangerates.org/signup/free

CHAPTER 10: Currencies Lah: Part 2 285

Fetch the Developer Key

Define a method in MainActivity. java that fetches the key stored in keys.properties called
getKey() underneath the extractCodeFromCurrency() method. Notice that we are using
the AssetManager to read a key from keys.properties. You will need to resolve imports as

necessary. See Figure 10-22.

private String getKey(String keyName) {
AssetManager assetManager = this.getResources().getAssets():
Properties properties = new Properties():;

try {
InputStream inputStream = assetManager.open("keys.properties");

properties.load(inputStream);

} catch (IOException e) {
e.printStackIrace();

}

return properties.getProperty(keylame);

Figure 10-22. Define the getKey() method

File I/0 is an expensive operation. The getKey() method we defined in the previous step
contains such an operation and so we’d like to call getKey() as seldom as possible. Rather
than calling getKey() every time we want to fetch the rates from openexchangerates.org, we
will make this call once in onCreate() and then store the value in a member called mKey of
MainActivity. Define members of your MainActivity class as shown in Figure 10-23.

//this vill contain my developers key

private String mKey;

//used to fetch the 'rates' json object from openexchangerates.org

public static final String RATES = "rates";

public static final String URL_BASE =
"http://openexchangerates.org/api/latest.json?app id=";

//used to format data from openexchangerates.org

private static final DecimalFormat DECIMAL FORMAT = new
DecimalFormat ("#,##0.00000") ;7

Figure 10-23. Define members to facilitate fetching key and formatting results

http://openexchangerates.org

286 CHAPTER 10: Currencies Lab: Part 2

At the end of the onCreate() method but still within its enclosing braces, assign a value to mKey
like so: mKey = getKey("open_key");. See Figure 10-24. Press Ctrl+K | Cmd+K and commit
with a message of Fetches key, defines members and constants.

ﬁ C:\androidBook\Cy ies\app\srcimain'java\com\apress\gerber\currencies\MainActivity java
4+ ¥ Ignore whitespace: | All = | Highlight: | By line = E ? B %
9333bb7acld8b46b32662952287645359... abbfI0beTfd31f57620454280f0a3abal1477 ce5 (Read-only)
9E 113 jefine be=havioz :
} ag 114 }
1z i 100 115 N
101 116 mKey = getKey("open key"):
7 differences Deleted Changed Inserted

Figure 10-24. Assign the key as the last statement of the onCreate() method

CurrencyConverterTask

A thread is a lightweight process that may run concurrently to other threads in the same
application. The first rule of Android concurrency is that you must not block the Ul thread,
which is alternatively known as the main thread. The Ul thread is the one that gets spawned
by default during app launch and drives the user interface. If the Ul thread is blocked for
more than 5,000 milliseconds, the Android OS will display an Application Not Responding
(ANR) error and your app will crash. Not only can blocking the Ul thread lead to an ANR
error, but the user interface will be completely unresponsive while the Ul thread is blocked.
Therefore, if an operation threatens to take more than a few milliseconds, it’s potentially Ul
thread-blocking, and it should be done on a background thread. For example, attempting to
fetch data from a remote server may last more than a few milliseconds and should be done
on a background thread. When used in an Android context, the term background thread
means any thread other than the Ul thread.

Note The Ul thread is sometimes referred to as the main thread.

The second rule of Android concurrency is that the Ul thread is the only thread that has
permission to interact with the user interface. If you attempt to update any view from a
background thread, your app will crash immediately! Violating either or both of the Android
concurrency rules will result in a poor user experience.

There’s nothing preventing you from spawning good old Java threads in your Android apps,
but a class called AsyncTask was designed expressly to solve the problems described in
this section and therefore it is the preferred implementation for Android concurrency. If you
implement AsyncTask correctly, you will have no problems following the two rules of Android
concurrency.

CHAPTER 10: Currencies Lah: Part 2 287

In this section, we’re going to create an inner class called CurrencyConverterTask that will be
used to fetch the currency rates quoted on openexchangerates.org. CurrencyConverterTask
is a concrete implementation of the abstract class AsyncTask. AsyncTask has one abstract
method called doInBackground() that all concrete classes are required to override. In
addition, there are several other methods that you may override, including onPreExecute(),
onProgressUpdate(), and onPostExecute(), among others. The magic of AsyncTask is that
the doInBackground() method is performed on a background thread, while the rest of
AsyncTask’s methods are performed on the Ul thread. Provided we don’t touch any views in
the doInBackground() method, AsyncTask is perfectly safe to use.

Define CurrencyConverterTask as a private inner class toward the end of MainActivity. java,
but still inside MainActivity’s enclosing braces. In addition to extending AsyncTask, you
must define three generic object parameters, as shown in Figure 10-25. Resolve any
imports. Even after you resolve the imports, your class definition will be underlined in red,
indicating that there are compile-time errors. Ignore this for now.

250, 9

251; 5] private class CurrencyConverterTask extends AsyncTask<String, Void, JSONObject> {
252!

253

254 |@

255 }//end MainActivity

256!

Figure 10-25. Define CurrencyConverterTask

Place your cursor inside the curly braces of the CurrencyConverterTask class definition,
press Alt+Insert | Cmd+N, and select Override Methods. Select the doInBackground(),
onPreExecute(), and onPostExecute() methods and click OK, as shown in Figure 10-26.
Notice that the return values as well as the parameters of doInBackground() and
onPostExecute() are defined according to the generic parameters <String, Void, JSONObject>.
The first parameter (String) is used as input into the doInBackground() method, the second
parameter (Void) is used to send progress updates to the onProgressUpdate() method, and
the third parameter (JSONObject) is the return value of doInBackground() as well as an input
parameter of the onPostExecute() method. The entire fetching operation should take about
a second, so progress updates would be almost imperceptible to the user; and this is why
we’re omitting the onProgressUpdate() method and using Void as the second parameter.

http://openexchangerates.org

This book was purchased by tanakasy@fukuoka-edu.ac.jp

288 CHAPTER 10: Currencies Lab: Part 2

Hl

v & android.os.AsyncTask
m & AsyncTask()
m 7 dolnBackground(t Params...):Result
m ¥ onPreExecute():void
m T onPostExecute(resultResult):void
m 7 onProgressUpdate(values:Progress...):void

m 7 onCancelled(result:Result):void
m 7 onCancelled():void
€ java.lang.Object

m 7 clone:Ohiect

O co py JavaDoc

@lnsert @Qverride m] Cancel .|.'

Figure 10-26. Select methods to override/implement

Let’s rearrange our methods so that they appear in the order in which they’re fired. Select the
entire onPreExecute() block, including the @0verride annotation, and press Ctrl+Shift+Up |
Cmd+Shift+Up to move the onPreExecute() method above the doInBackground() method.
Your CurrencyConverterTask should now look like the one in Figure 10-27.

248

2490 @A }

250! [

251 private class CurrencyConverterTask extends AsyncTask<String, Void, JSONObject> {
252 @Override

253 8] protected void onPreExecute() {

254 super.onPreExecute () ;

255 }

256

257 i @Override

258 ®f (9 protected JSONObject doInBackground(String... params) {
259 | ! return null;

260 2 }

261

262 1 @Override

263 @] EJ protected void onFostExecute (JSONObject jsonObject) {
264 super.onPostExecute (jsonObject) ;

265! |& }

2660 |@ }

267 //end MainActivity

Figure 10-27. Results after overriding methods in CurrencyConverterTask and moving onPreExecute() up

CHAPTER 10: Currencies Lah: Part 2 289

Modify the CurrencyConverterTask once again so that it looks like Listing 10-6 and resolve any
imports. Let’s discuss each of the three overridden methods of CurrencyConverterTask in turn.

Listing 10-6. Modify the CurrencyConverterTask

private class CurrencyConverterTask extends AsyncTask<String, Void, JSONObject> {

private ProgressDialog progressDialog;

@0verride
protected void onPreExecute() {

progressDialog = new ProgressDialog(MainActivity.this);
progressDialog.setTitle("Calculating Result...");
progressDialog.setMessage("One moment please...");
progressDialog.setCancelable(true);

progressDialog.setButton(DialogInterface.BUTTON NEGATIVE,
"Cancel", new DialogInterface.OnClicklListener() {
@0verride
public void onClick(DialogInterface dialog, int which) {
CurrencyConverterTask.this.cancel(true);
progressDialog.dismiss();

}
};

progressDialog.show();

@0verride
protected JSONObject doInBackground(String... params) {

return new JSONParser().getJSONFromUrl(params[0]);
}

@0verride
protected void onPostExecute(JSONObject jsonObject) {

double dCalculated = 0.0;

String strForCode =
extractCodeFromCurrency(mCurrencies[mForSpinner.getSelectedItemPosition()]);

String strHomCode = extractCodeFromCurrency(mCurrencies[mHomSpinner.

getSelectedItemPosition()]);

String strAmount = mAmountEditText.getText().toString();

try {

if (jsonObject == null){
throw new JSONException("no data available.");
}

JSONObject jsonRates = jsonObject.getJSONObject(RATES);
if (strHomCode.equalsIgnoreCase("USD")){

dCalculated = Double.parseDouble(strAmount) / jsonRates.getDouble(strForCode);
} else if (strForCode.equalsIgnoreCase("USD")) {

dCalculated = Double.parseDouble(strAmount) * jsonRates.getDouble(strHomCode) ;

290 CHAPTER 10: Currencies Lab: Part 2

else {
dCalculated = Double.parseDouble(strAmount) * jsonRates.getDouble(strHomCode)
/ jsonRates.getDouble(strForCode) ;

}
} catch (JSONException e) {
Toast.makeText(
MainActivity.this,
"There's been a JSON exception: " + e.getMessage(),
Toast.LENGTH_LONG

).show();
mConvertedTextView.setText("");
e.printStackTrace();

}

mConvertedTextView.setText (DECIMAL FORMAT.format(dCalculated) + " " + strHomCode);
progressDialog.dismiss();

onPreExecute()

The onPrekxecute() method is executed on the Ul thread just prior to firing the
doInBackground() method. Since we may not touch any views in the Ul from a background
thread, the onPreExecute() method represents an opportunity to modify the Ul before
doInBackground() is fired. When onPreExecute() is invoked, a ProgressDialog will appear
with an option for the user to press a Cancel button and terminate the operation.

doinBackground()

The doInBackground() method is a proxy for the execute() method of AsyncTask.
For example, the easiest way to invoke a CurrencyConverterTask is to instantiate a new
reference-anonymous object and call its execute()method like so:

new CurrencyConverterTask().execute("url to web service");

The parameters you pass into execute() will in turn be passed into doInBackground(),

but not before executing onPreExecute(). The full signature of our doInBackground()

is protected JSONObject doInBackground(String... params). The parameters for
doInBackground() are defined as varargs and so we may pass as many comma-separated
arguments of type String into execute() as we want, though in this simple app we’re
passing only one—a string representation of a URL. Once inside the doInBackground()
method, params is treated as an array of strings. To reference the first (and only) element, we
use params[0].

Inside the body of doInBackground(), we call return new JSONParser().getJSONFromUrl(params[0]);.
The getJSONFromUrl() method fetches a JSONObject from a web service. Since this
operation requires communication between the user’s device and a remote server—and

thus may take more than a few milliseconds—we place getJSONFromUr1() inside the
doInBackground() method. The getJSONFromUrl() method returns a JSONObject, which is the

CHAPTER 10: Currencies Lah: Part 2 291

return value defined for doInBackground(). As we stated earlier, doInBackground() is the only
method of AsyncTask that runs on a background thread, all the other methods are running on the
Ul thread. Notice that we are not touching any views in the doInBackground() method.

onPostExecute()

Like onPreExecute(), the onPostExecute() method is running on the Ul thread. The return
value of doInBackground() is defined as a JSONObject. This same object will be passed

as a parameter into the onPostExecute() method whose full signature is defined as
protected void onPostExecute(JSONObject jsonObject). By the time we are inside the
onPostExecute() method, the background thread of the doInBackground() method has
already terminated and we may now safely update the Ul with the JSONObject data fetched
from doInBackground(). Finally, we do some calculations and assign the formatted result to
the mConvertedTextView.

— - e —
| # CAandroidBook\C: ies\app\src\main\java\comiapress\gerber\currencies\MainActivity.java
T 4 Ignorewhitespace: |All ¥ | Highlight: |Byline = ? B %
ab6fo0be7f431f57620454280f0a3... e93fddef528925e9e66304 eccl46099aed2dad8e (Read-only)
nnnnn e fiv BRI LI & L e S LU | £ L U LA I VA GG | £ LR Ly
108 115 HOM), mCurrencies)):
} 109 116 }
mCalcBu- 110 117 mCalcButton.setOnClickListener (new View.OnClickListener() {
Bow 111 118 @override
pub. 112 119 public void onClick (View v} {
113 120 i new CurrencyConverterTask() .execute (URL_BASE + mKey):
} 114 121 }
1 115 122 H:
miey = ¢ 116 123 mKey = getHey("open key");
8 differences Deleted Changed Inserted

Figure 10-28. Fire the new CurrencyConverterTask in the mCalcButton onClick method

Before we can run our app, we need to make one last change to our code in order to execute
CurrencyConverterTask. Modify the onClick() method of the mCalcButton per Figure 10-28.

Press Ctrl+K | Cmd+K and commit with a message of Implements CurrencyConverterTask.
Run your app by pressing Shift+F10 | Ctrl+R. Type an amount in the Enter Foreign Currency
Amount Here field and click the Calculate button. You should get a result back from the
server, and this result should be displayed in the Calculated Result in Home Currency

field. If your app failed to return a result, verify that you have a valid developer’s key from
openexchangerates.org.

Button Selector

When you ran your Currencies app, you may have noticed that the text displayed in the
mConvertedTextView was black, which does not provide sufficient contrast. Open the
activity main.xml file and modify the definition of the txt_converted TextView by inserting
the line highlighted in Figure 10-29.

http://openexchangerates.org

292 CHAPTER 10: Currencies Lab: Part 2

[@ 4 & Ignorewhitespace: |All~ | Highlight: [By line ~ . 7?0 % 8fE
98949430d61fc71c016€06013731d58c3¢f4... 07e06€72b982fd414960022203e8c5d63dc7f7a4 (Read-only)
BRI
<TextView P92 92; <TextView

mdroid:ic; i 93 93; i android:id="@+id/txt converted"

android:1lz P94 | 94 android: textColor="gcolor/white"

android:la | 95 95, | android:layout_width="fill parent"

android:1z | 96 96] android: layout_height="50dp" -

1 difference | Deleted —| Changed | Inserted

Figure 10-29. Insert the textColor attribute of txt_converted and set to @color/white in activity_main.xml

Right-click (Ctrl-click on Mac) the drawable directory and select New » Drawable Resource
File. Name the resources button_selector, as shown in Figure 10-30. Modify the XML

so that it looks like Figure 10-31. Change the definition of btn_calc in activity main.xml
per Figure 10-32.

File name: [button_selector]

Root element: | selector

“o JEE

Figure 10-30. Create the button_selector resource file

CHAPTER 10: Currencies Lah: Part 2 293

T & Ignorewhitespace: |All ¥ | Highlight: . ? B % £
edc124ec77a937609285b01b11e07c63f836€627 (Read-only)
LF

<?xml version="1.0" encoding="utf-8"2>

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item
android:state pressed="true"
android:drawable="gcolor/turquoise" />
<item android:drawable="gcolor/flat blue"/>

W 0 =) o U e W M

</selector>

1 difference | Deleted — | Changed | Inserted

Figure 10-31. Modify the button_selector resource file

Ignore whitespace: | All = | Highlight: | By line ~ | . ? B % € ¥ E
0?962]’2b98&fd414m&03e8c5_l:53d_c?§: OEE&Scﬂ_thSQcﬁlDfﬂ?SBchﬁdccHﬁlaZd (Read-only)
<Button I 154 54 <Button
android:id="g+i | 55 ssi | android:id="g+id/btn_calc"
android:layout_ 56 s6 | android:layout width="fill parent"
android: layout_| i 57 57i android:layout_height="0dp"
androic:la;fout_f 58 5&5 android:layout marginLeft="10dp"

; android: layout_ | 59 59 android:layout_marginRight="10dp"
android:layout_ | 60 60l | android:layout_weight="10"
android:text="C___ 61 61 | android: text="Calculate"
android: textCol | 62 62 android: textColor="gcolor/white"

€3 \\ 63 android:background="gdrawable/button selector"/>
<LinearLayout i |64 (-1 .
1 difference | Deleted | Changed : 1 Inserted

Figure 10-32. Modify the btn_calc in activity_main.xml

Press Ctrl+K | Cmd+K and commit with a message of Creates button selector.

Launcher Icon

Rather than use the generic Android icon as the launcher icon, we’re going to define our own.
I've taken the liberty of using advanced Google image search to find a royalty-free image of

a one euro coin, which is among the nicest coins in circulation. You can find this image here:
http://pixabay.com/static/uploads/photo/2013/07/13/01/21/coin-155597 640.png.

http://pixabay.com/static/uploads/photo/2013/07/13/01/21/coin-155597_640.png

294 CHAPTER 10: Currencies Lab: Part 2

Download this image and name it coin.png. Switch your Project tool window to Android
view. Right-click (Ctrl-click on Mac) the res/mipmap directory and select New » Image
Asset. In the subsequent dialog box, select the drawable directory as the destination
directory. Create ic_launcher.png files for each resolution by using the settings in
Figure 10-33 and then click Next and Finish. Insert the following lines of code into the
onCreate() method of MainActivity, after the line of code which inflates the layout,
setContentView(R.layout.activity main);. This code displays a custom icon in your
Action Bar:

ActionBar actionBar = getSupportActionBar();
actionBar.setHomeButtonEnabled(true);
actionBar.setDisplayShowHomeEnabled(true);
actionBar.setIcon(R.mipmap.ic_launcher);

The icon for this app will now be a one euro coin, rather than a standard Android icon.
Press Ctrl+K | Cmd+K and commit with a message of Creates launcher icon.

Asset Type: , Launcher Icons n
Foreground: @® Image) Clipat O Tett
Image file: I c:\dev\coin.png | |—

[Trim surrounding blank space
Additional padding: @
Foreground scaling: () Crop @ Center

Shape: (®) None () Square () Circle

Background color:

Resource name: | ic_launcher

Figure 10-33. Create ic_launcher icons

CHAPTER 10: Currencies Lah: Part 2 295

Summary

This chapter showed how Android inflates views and how the R. java file acts as a bridge
between your resources and your Java source files. You learned how to unpack a value from
a bundle and implemented menus and coded their behavior. You used an ArrayAdapter to
bind an array of strings to spinners. You also learned how to use Android Studio to delegate
the handling of view events to the enclosing activity. You learned how to use shared
preferences and assets. You learned about concurrency in Android —specifically about the
methods of AsyncTask. You also implemented your own CurrencyConverterTask, which
fetches the currency rates from the openexchangerates.org web service. Finally, you used
Android Studio to generate image resources and created a button selector.

We’ve completed the Currencies app that we began in the previous chapter. Run your app by
pressing Shift+F10 | Ctrl+R and ensure that it functions as it should. If you’re an experienced
Android developer or just a particularly curious Ul tester, you may notice that there is a corner
case that will cause the app to crash. We’re going to leave this bug in place and fix it in
Chapter 11, which is devoted to analyzing and testing.

http://openexchangerates.org
http://dx.doi.org/10.1007/9781430266013_11

Chapter

Testing and Analyzing

Testing is a critical stage in any software development life cycle. In some shops, the quality
assurance team is responsible for writing and maintaining tests, while in others, the
development team must carry out this task. In either case, as an application becomes ever
more complex, the need for testing becomes ever more important. Testing allows the team
members to identify functional problems with the application so that they may proceed with
confidence knowing that any changes they make in the source code do not result in runtime
errors, erroneous output, and unexpected behavior. Of course, even the most thorough
testing cannot eliminate all errors, but testing is the software development team’s first line
of defense.

Testing is a contentious issue among software developers. All developers would probably
agree that some testing is required. However, there are those that believe that testing is

so important that it should precede the development stage (a methodology known as
test-driven development), while in other shops, particularly start-ups, there are those who
seek to create a minimum viable product and thus regard testing as a potentially wasteful
endeavor to be undertaken only sparingly. Whatever your view of testing may be, we
encourage you to familiarize yourself with the techniques covered in this chapter, including
the classes in the android.test library, as well as the tools that come bundled with Android
Studio and the Android SDK.

We’ve chosen to cover those tools that we believe have the greatest utility for Android
developers. In this chapter, we introduce instrumentation testing; then show you Monkey,
which is an excellent tool that comes with the Android SDK that can generate random Ul
events for stress-testing your apps; and finally we show you some of the analytical tools in
Android Studio.

Tip There is a good third-party testing framework called Roboelectric. While Roboelectric does
not provide any clear benefits over the Android SDK testing framework we discuss here, it remains
popular among Android developers. You can find more information about Roboelectric here:
robolectric.org.

297

http://robolectric.org

298 CHAPTER 11: Testing and Analyzing

Creating a New Instrumentation Test

Instrumentation tests allow you to perform operations on a device as if a human user
were operating it. In this section, you’ll create an instrumentation test by extending the
android.test.ActivityInstrumentationTestCase2 class.

Open the Currencies project from Chapter 10 and switch your Project tool window to
Android view. In the Project tool window, right-click (Ctrl-click on Mac) the com.apress.
gerber.currencies(androidTest) package and choose New » Java Class. Name your class
MainActivityTest, extending ActivityInstrumentationTestCase2<MainActivity>.

Define a constructor, as shown in Figure 11-1. You will notice that the generic parameter of
ActivityInstrumentationTestCase2<> is MainActivity, which is the activity being tested here.

public class MainActivityTest extends ActivityInstrumentationTestCase2<MainActivity> {

public MainActivityTest() {
super (MainActivity.class);
}

LS T S S L T S R
W M PO W o

=

}

Figure 11-1. Define a class called MainActivityTest, which extends ActivitylnstrumentationTestCase2

Define SetUp() and TearDown() Methods

Place your cursor in the class scope of MainActivityTest and press Alt+Insert | Cmd+N
again to invoke the Generate context menu, shown in Figure 11-2. Select SetUp Method
and press Enter. Repeat this process for TearDown Method. The skeleton code should
look like Figure 11-3. The setUp() and tearDown() methods are life-cycle methods of this
instrumentation test. The setUp() method provides you with an opportunity to connect to
any required resources, pass in any data via a bundle, or assign references before running
the tests. The tearDown() method may be used to close any connections and clean up any
resources after the test methods have run.

http://dx.doi.org/10.1007/9781430266013_10

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 11: Testing and Analyzing

Generate

E Test Method

¥
}
SetUp Method g
TearDown Method »
Parameters Method »

Constructor

Getter

Setter

Getter and Setter
equals() and hashCode()
ec Al [toString() ;4, 4
Override Methods...

Delegate Methods...
Copyright

Figure 11-2. Generate SetUp and TearDown methods

299

ha+ 4 Ignore whitespace: Highlight: . ? F} #- € P &

3115919457af545e0266a3df3bdd... €a22180cbafd637275916bd7 df7c7338cf798d92 (Read-only)
//to call this t 10 14 public MainActivityTest(){
//from the comma 11 15 super (MainActivity.class);
public class Mai 12 18 }

13 17

public Mainh 14 /118 @Override

super (Ma 15| /[|19 public void setUp() throws Exception {
20 super.setlp();
21 }

22

23
24 @override
25 public void tearDown() throws Exception {
26 super.tearDown() ;

\[27 }

28

2 differences | Deleted ~ | Changed | Inserted

Figure 11-3. SetUp and TearDown skeleton code

300 CHAPTER 11: Testing and Analyzing

Open the MainActivity.java file, which is the activity we will be testing, and examine the
onCreate() method. In every activity—and MainActivity is no exception—the onCreate()
life-cycle method is your opportunity to get references to inflated views. For example, in
MainActivity, the line mCalcButton = (Button) findViewById(R.id.btn calc); will find the
view instantiated on the heap and identified by the R.id.bnt_calc ID, cast it to a Button, and
assign that reference to mCalcButton.

In MainActivityTest, we’re going to get references to the views of MainActivity in almost
exactly the same way. However, since findViewById() is a method of Activity—and not
ActivityInstrumentationTestCase2—we need a reference to MainActivity in order to do
this. Define a reference called MainActivity mActivity; in your MainActivityTest, along
with the other references, as shown in Figure 11-4. The ActivityInstrumentationTestCase2
<MainActivity> class has a method called getActivity(), which returns a reference

to MainActivity. The views in MainActivity have already been inflated by the time the
MainActivity reference is passed to the constructor of MainActivityTest. Once we have this
reference, we can call mActivity.findViewById() to get our references, as shown in Figure 11-4.

public class MainActivityTest extends ActivityInstrumentationTestCase2<MainActivity>

private MainActivity mActivity;

private Button mCalcButton;

private TextView mConvertedTextView;
private EditText mAmountEditText;
private Spinner mForSpinner, mHomSpinner;

public MainActivityTest(){
super (MainActivity.class);

}

@Override
public void setUp() throws Exception {

sl Ehm arclaos iy T =

geL cne CClVALY uUnacr

mActivity = getActivity():;

references to our vievs

//dS851gn
mCalcButton = (Button) mActivity.findViewById(R.id.btn calc):;
mConvertedTextView = (TextView) mActivity.findViewById(R.id.txt_converted):
mAmountEditText = (EditText) mActivity.findViewById(R.id.edt_amount);
mForSpinner = (Spinner) mActivity.findViewById(R.id.spn_for):

mHomSpinner = (Spinner) mActivity.findViewById(R.id.spn hom);

}
Figure 11-4. Define the members and body of the setUp() method

Press Ctrl+K | Cmd+K and commit with a message of Gets references to inflated views
in MainActivity. Keep in mind that under normal circumstances, MainActivity is launched
from SplashActivity, which fetches the active currency codes and stores the codes

in an ArraylList<String>, then packs that ArrayList<String> into a bundle, and then
shuttles that bundle into MainActivity via an intent. We can simulate all of this without
resorting to SplashActivity. Re-create the code, as shown in Figure 11-5. In the line

CHAPTER 11: Testing and Analyzing

301

setActivityIntent(intent), we are priming MainActivity with test data—the same kind of
data MainActivity would otherwise expect if it had been called under normal circumstances

by SplashActivity.

public void setUp() throws Exception {
super.setlp();

//PdSsS DOgus Currenclies

ArrayList<String> bogusCurrencies = new ArraylList<String>():
bogusCurrencies.add ("USD|United States Dollar"):
bogusCurrencies.add ("EUR|Euro") ;

Intent intent = new Intent():
intent.putExtra(SplashActivity.KEY ARRAYLIST, bogusCurrencies):
setActivityIntent (intent);

Figure 11-5. Simulate the work of SplashActivity by passing a loaded intent into MainActivity

Define Callback in MainActivity

In most cases, your instrumentation tests will proceed on the Ul thread without any need

to modify the activity under test. However, in our case, we’d like to test the state of the

application after CurrencyConverterTask completes its work on a background thread. To do

this, we need to define a callback in MainActivity.

Open MainActivity.java and define the instance, interface, and setter, as shown in

Figure 11-6. Also, at the very end of the onPostExecute() method of CurrencyConverterTask,
add the code per Figure 11-7. Press Ctrl+K | Cmd+K and commit with a message of Define

callback in MainActivity.

¢ tueed o format data from openexchancerabes ovea
J/usea co formac adata Irxom copenexcnangeraces.org

private static final DecimalFormat DECIMAL_FORMAT = new
DecimalFormat ("#,##0.00000");

//create this interface for instrumentation testing with threads

private CurrencyTaskCallback mCurrencyTaskCallback;

public static interface CurrencyTaskCallback {
void executionDone():

}

public void setCurrencyTaskCallback(CurrencyTaskCallback currencylaskCallback) {
this.mCurrencyTaskCallback = currencyTaskCallback;
}

Figure 11-6. Define an interface in the MainActivity.java class

302 CHAPTER 11: Testing and Analyzing

progressDialog.dismiss();

//for testing
if (mCurrencyTaskCallback !'= null) {
mCurrencylaskCallback.executionDone() ;

}

}

Figure 11-7. Add an if block of code to the end of CurrencyConverterTask

Define Some Test Methods

Return to MainActivityTest. java. Place your cursor in the class scope. Re-create the
methods called proxyCurrencyConverterTask() and convertToDouble() shown in Listing 11-1.
You will need to resolve some imports. The proxyCurrencyConverterTask() method allows
you to populate the spinners with data, simulates clicking the Calculate button, and waits for
a response from the server before testing that the data returned from the server is accurate.

Listing 11-1. Create Method to Simulate CurrencyConverterTask and Wait for Termination

public void proxyCurrencyConverterTask (final String str) throws Throwable {

final CountDownlatch latch = new CountDownlatch(1);
mActivity.setCurrencyTaskCallback(new MainActivity.CurrencyTaskCallback() {

@0verride
public void executionDone() {
latch.countDown();
assertEquals(convertToDouble(mConvertedTextView.getText().toString().
substring(o, 5)),convertToDouble(str));

}
D;
runTestOnUiThread(new Runnable() {

@0verride

public void run() {
mAmountEditText.setText(str);
mForSpinner.setSelection(0);
mHomSpinner.setSelection(0);
mCalcButton.performClick();

1

CHAPTER 11: Testing and Analyzing 303

latch.await(30, TimeUnit.SECONDS);

private double convertToDouble(String str) throws NumberFormatException{
double dReturn = 0;

try {
dReturn = Double.parseDouble(str);
} catch (NumberFormatException e) {
throw e;

}

return dReturn;

}

Place your cursor in class scope again just underneath the proxyCurrencyConverterTask()
method, and press Alt+Insert | Cmd+N to invoke the Generate context menu. Select Test
Method and press Enter. Name your method testInteger() and re-create the method as
shown in Figure 11-8, including replacing Exception with Throwable. Repeat these steps for
a test method called testFloat().

35 public void testInteger() throws Throwable {
proxyCurrencyConverterTask("12");

38 public void testFloat() throws Throwable {

a8 proxyCurrencyConverterTask("12..3");

1

Figure 11-8. Create test methods. Pass a nonnumeric value such as “12..3” or “12,,3” into
proxyCurrencyConverterTask()

In both test methods, we are delegating much of the behavior to the
proxyCurrencyConverterTask() method. Keep in mind that in order for your test method to
be recognized by ActivityInstrumentationTestCase2, it must start with a lowercase test.

In testInteger(), we are populating mAmountEditText with the string representation of the
integer 12 and setting both mForSpinner and mHomSpinner with the currencies array index
that corresponds to EUR|Euro. Then we simulate clicking the mCalculateButton by invoking
its performClick() method. We're using a mechanism called CountDownLatch, which is
set to suspend the current thread while we fetch the currency rates from the server. Once
the thread of CurrencyConverterTask in MainActivity terminates, CurrencyConverterTask
will call executionDone(), which releases the pending CountDownLatch, allowing
ActivityInstrumentationTestCase2 to proceed and call assertEquals(). Since both the
home currency and foreign currency were set to EUR, the output should be identical to the
input. The instrumentation tests we’ve created here use the JUnit framework; thus, if the
assertEquals() method evaluates to true, our test will pass.

In the testFloat() method, we are simulating the same process as described previously,
though we are populating the mAmountEditText with nonnumeric data (12..3). Although

we are constraining the user by setting the soft keyboard for mAmountEditText to allow for
numeric input only, there is still a chance that our user will enter two decimal points in a
row, and this is the scenario we are testing here. Press Ctrl+K | Cmd+K and commit with a
message of Create proxy methods.

304 CHAPTER 11: Testing and Analyzing

Note In some languages, a comma is used in place of a period for a decimal point. If the default
language of your device is set to such a language, your soft keyboard will display a comma rather
than a period. You may simply test for (12,,3) rather than (12..3).

Run Instrumentation Tests

Right-click (Ctrl-click on Mac) the MainActivityTest class from the Project tool window and
select Run from the context menu. You can also select MainActivityTest from the combo-box
located to the left of the Run button in the tool bar, and then press the Run button. Android
Studio will display the Run tool window, and the console will display your progress. Your
testFloat() method should fail, and you will see a red progress bar, as shown in Figure 11-9.
Notice that the exception thrown is called java.lang.NumberFormatException. Change

the value from 12..3 to 12.3 (or if your language uses commas rather than periods for
decimal points, from 12,,3 to 12,3) in the proxyCurrencyConvertTask() method inside the
testFloat() method and run it again. Your test should now succeed, and you should see

a green progress bar, as shown in Figure 11-10. Press Ctrl+K | Cmd+K and commit with a
message of Creates instrumentation test.

Run ' MainAdtivityTest o=k
rPBuz= + £, Done1of1 Failed:1 33765) (0 A W R

¥ @ Teminated
S com.apress.gerber.cumencies MainActivity
@ testFlcat

o\ apk) app-debug. apk
| B9 cies

2
K\ app-debug-test-unaligred. apk
TeatT

o %, Dene2of2 91923

Testing started at 2:31 BM ...

shappibuildioutputsapkiapp-debug-test-unaligned. apk
gerber.currencies.ceat

nstall -r ~/da
=.8PIeds.gerker. currencies.teat

Tests passed

Figure 11-10. All tests succeeded

CHAPTER 11: Testing and Analyzing 305

Fix the Bug

The failed test you just ran highlights a problem with your code. Even though the keyboard is set
to accept numeric values only, the decimal point may be entered multiple times, which will cause
a NumberFormatException when Android attempts to convert a string value such as "12..3"
to a double. You need to verify that the data entered by the user is numeric before invoking
CurrencyConverterTask. In MainActivity.java, create the method called isNumeric(),

as shown in Listing 11-2.

Listing 11-2. The isNumeric() Method to Be Used to Verify Input from the User

public static boolean isNumeric(String str)

{
try{
double dub = Double.parseDouble(str);
catch(NumberFormatException nfe) {
return false;
}
return true;
}

Modify the onClick() method of mCalcButton so that we verify that the input data is numeric
before executing the CurrencyConverterTask, as shown in Figure 11-11.

mCalcButton.setOnClickListener (new View.OnClickListener() {

public void onClick(View v) {
if (isNumeric(String.valueOf (mAmountEditText.getText()))){
new CurrencyConverterTask().execute (URL BASE + mFKey);
} else {
Toast.makeText(MainActivity.this, "Not a numeric value, try again.", Toast.LENGTH LONG).show():
}

h:

Figure 11-11. Modify the onClick() method so that we verify the input value of mAmountEditText with isNumeric()

Congratulations—you just created an instrumentation test, used it to identify a bug, and then
fixed that bug in the source code. Press Ctrl+K | Cmd+K and commit with a message of
Fixes bug by verifying that input is numeric.

Using Monkey

There is an excellent tool that comes with the Android SDK called Monkey, alternatively
known as the Ul/Application Exerciser Monkey. This tool allows you to generate random Ul
events on your app as if a monkey were using it. Monkey is useful for stress-testing your
apps. The documentation for Monkey can be found at developer.android.com/tools/help/
monkey .html.

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

306 CHAPTER 11: Testing and Analyzing

Note In addition to Monkey, a tool called MonkeyRunner allows you to create and run Python
scripts to automate your application for testing. MonkeyRunner is not related to Monkey.
Furthermore, MonkeyRunner requires that you know how to script using Python, which is outside
the scope of this book. If you’re interested in learning more about MonkeyRunner, please see the
documentation at developer.android.com/tools/help/monkeyrunner_concepts.html.

Begin by opening a terminal session within Android Studio by pressing the Terminal window
button located along the bottom margin of the IDE. Start the Currencies app by selecting
app in the combo-box of the tool bar and clicking the green Run button. Once the app is
running and idle, issue the following command to a terminal session, and then press Enter,
as shown in Figure 11-12:

adb shell monkey -p com.apress.gerber.currencies -v 2000

_EiTerminal
.gl 4 Microsoft Windows (Version 6.1.7601]
%l X Copyright (c) 2009 Microsoft Corporation. All rights reserved.
2
,‘.| C:\androidBook\Currencies\app>adb shell monkey -p com.apress.gerber.currencies -v 2000'
£
=
®
il
"
P 4Run #€5:Debug 2 TODO +F 6:Android | [Terminal ' 9: Changes & 0: Messages

Figure 11-12. Open a terminal session, type the monkey command, and then press Enter

The first thing you will notice from this command is that Monkey is using the adb, or Android
Debug Bridge, which allows you to interface with the operating system shell of the running
device. If you forget to launch your app before issuing this command, Monkey will not
work. The -p switch tells Monkey to constrain its random Ul events to the com.apress.
gerber.currencies package. The -v switch tells Monkey to report events and exceptions

in a verbose way; if Monkey does throw an exception, it’s easier to trace the exception if
the reporting is verbose. The last argument (2000) is the number of events. Two thousand
randomized Ul events should expose any problems with the Ul, and you can run this
command as often as you like.

Gaution When running Monkey, even while constraining Monkey’s Ul events to a particular
package, you run the risk of accidentally changing your device’s default settings. For example,
it’s not uncommon for Monkey to flip your Wi-Fi or change the phone’s default language.

http://developer.android.com/tools/help/monkeyrunner_concepts.html

CHAPTER 11: Testing and Analyzing 307

Working with Analytical Tools

The analytical tool that comes bundled with the Android SDK is called Lint. It wasn’t too long
ago that developers were required to call this tool from the command line. Fortunately, Lint is
now completely integrated into Android Studio. Lint will analyze your source code, XML files,
and other assets in search of potential bugs, unused resources, inefficient layouts, hard-coded
text, and other potential problems related to Android. What’s more, Android Studio has its
own analytical tool that performs similar operations for both Java and Android syntax, and is
even more powerful than Lint. Together, this fully integrated suite of tools will keep your code
clean and hopefully bug-free. You can access Android Studio’s analytical tools from the
Analyze menu located in the main menu bar.

Inspect Code

The Inspect Code operation is the most useful and comprehensive of the analytical
operations. Navigate to Analyze » Inspect Code to run this operation. In the resulting dialog
box, select the Whole Project radio button and click OK, as shown in Figure 11-13. Wait a
few seconds while Android Studio analyzes your entire project and displays the results in the
Inspections tool window, shown in Figure 11-14. You will notice that a directory for Android
Lint inspections is listed first, and then several more directories for Android Studio’s own
inspections are listed further on.

Inspection scope
* | Whole project
(O File '[app] - C:\androidBook\Currencies\app\src\main\java\com\apress\gerber\currencies\MainActivity.java'
(O Custom scope :
@ Include test sources

Inspection profile

[55 Project Default
“ Cancel | | Help

Figure 11-13. Select the Whole Project option from the Specify Inspection Scope dialog box

308 CHAPTER 11: Testing and Analyzing

Profile ‘Project Default’

Top @) v ® Cumencies | Hase

% B ¥ Android Lint C private field Arraylist sCurrencies
— = » @ Hardcoded text 3 ¢
= m » & Image defined in density-independent drawable folder (1 ¢ L.ocasmn o
z & B SNmMIayoutwmghls 5 class SplaabActivity (com.apress.gerber.currencies)
1+ » 8 Overdraw: Painting regions more than once Probles synopsis
+ ¥ » B Unused resources (5 Field can be converted to & local variable (at line 27)

¥ Class structure (|
* v @ Field can belocal
o e ¥ 8B R SpldhAcity Probles resolution
? ® Field can be converted to a local variable Convers so local

¥ Declaration redundancy (14

v 8§ Actual method parameter is the same constant [/ ¢ Suppress
v E & MainActivity sSupnress fof mesber
& Actual value of parameter “keyMame” is abways ““open_key™ R
@ Actual value of parameter “strlni™ is alwirys “com.apress.gerber.currencies.SplashActivity URL_CC 211 inacass o e
» @ Declaration access can be weaker

* Imports & 1t

* Java language level migration aids

* Performance lsues ||

> Probable bugs (7

> Spelling (10t

[XML

® DtpendengyViewer B &Run W 5:Debug | Einspection | BTODO & GAndroid [Terminal M 3:Changes [0 Messages W Eventlog [F Gradie C

Figure 11-14. Inspection tool window showing results of the Inspect Code operation

Please keep in mind that the problems identified by the Inspect Code operation may not

be serious problems at all. Therefore, do not feel obligated to fix each and every problem.
Furthermore, in rare instances the suggested solutions might actually break your code or go
against your original good intentions. Therefore, you should consider the problems identified
by Lint and Android Studio’s analytical tools as suggestions.

Toggle open the directories in the Inspections tool window until you are able to see the
individual line items. As you inspect these line items, notice a summary of each possible
problem in the right pane of the Inspections tool window; details include Name, Location,
Problem Synopsis, Problem Resolution, and Suppress, as shown in Figure 11-14. Fixing
a potential problem is as easy as clicking the blue hypertext directly beneath the Problem
Resolution title; Android Studio will do the rest. Avoid the temptation to fix each and every
problem identified by the Inspect Code operation. If you do fix one of these problems,
proceed with caution and test your app to ensure that you’re not introducing new errors.

Analyze Dependencies

The Analyze Dependencies operation is likewise found in the Analyze menu of the

main menu bar. Analyze Dependencies will examine your source code and identify any
dependencies for you automatically. You could perform this operation manually by
inspecting the import statements of each and every Java source file in your project, but this
is tedious. The Analyze Dependencies operation saves you this tedium and also identifies
the location of each dependency.

Dependencies in Android may come from various sources, including the Java JDK, the
Android SDK, third-party JAR libraries such as Apache Commons, and library projects such
as Facebook. If a collaborating developer is unable to compile and run a project, the primary
suspect is a missing dependency, and you may use the Analyze Dependencies operation to
determine which dependencies might be missing. Before Gradle, managing dependencies
was a big deal. Since the advent of Gradle, most dependencies are downloaded for you
automatically, and Gradle makes managing dependencies easy and portable.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 11: Testing and Analyzing 309

Choose Analyze » Analyze Dependencies from the main menu bar. Wait for Android Studio to
perform the operation and view the results in the Dependency Viewer tool window, as shown
in Figure 11-15. Navigate through the individual line items in the left and right panes and notice
that the bottom pane highlights the location of each dependency in your Java source files.

Dependency Viewer
X » Y % (Bracages~] ¥ O ?
|'v B3 Production Classes trie v [l Library Classes (12 ent
[<default package> (1 ¢ » [android.util (1 ent
v [com.apress.gerber.currencies (4 entric B javaiio
€ ‘& JSONParser.java (| cniry [java.lang (4
€& MainActivity.java (1 entry v [org.apache.http (2 ent
€6 PrefsMgr.java (1 en [HitpEntity.class (1 entry)
© b SplashActivity,java (1 [5 HttpResponse.class (1 ent
| 1 drawable (2 entries [F1 ora.avache.htto.client (1 ents
= LOCAI VANAoie QeCIaration (L Lsage
< v [3app(lusage
I @® v [com.apress.gerber.currencies (1 usage
- v (© & JSONParser (1 usage,
| v m G get)SONFromUrl(String) (1 usage
E :

(33 13) HutpEntity httpEntity = httpResponse.getEntity();
+ * Unclassified usage (2 5

| » » F Usageinimport (1 usage
‘E Dependenqr\‘imr P 4 Run ¥ 5: Debug # Inspection ‘3: TODO & 6 Android [Terminal M 3: Changes &= 0: Messages

Figure 11-15. Analyze Dependencies tool window showing dependency on org.apache.http.HttpEntity.class

Analyze Stacktrace

Assuming you’re not in debug mode and an exception is thrown, the best way to track it
down is to inspect logcat, which is Android’s logging tool. Logcat is so good and so verbose
that it can easily overwhelm you, and this is why you should use Analyze Stacktrace.

Undo the bug fix we did earlier. If you’re familiar with Git, you can revert the last commit.
Otherwise, comment out the code that fixes this bug, as shown in Listing 11-3.

Listing 11-3. Comment Out the Bug Fix

mCalcButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {

// if (isNumeric(String.valueOf(mAmountEditText.getText()))){
new CurrencyConverterTask().execute(URL BASE + mKey);
// '} else {
// Toast.makeText(MainActivity.this, "Not a numeric value, try again.",
// Toast.LENGTH_LONG).show();
// '}
}
D;

Run the Currencies app by pressing the green Run button in the main toolbar. Once the
Currencies app is launched and ready, input 12..3 (or 12,,3 if your language uses commas
instead of periods) in mAmountEditText and press the Calculate button. The app will crash
because 12..3 is not a numeric value.

310 CHAPTER 11: Testing and Analyzing

Press Alt+6 | Cmd+6 to activate the Android DDMS tool window. Click the logcat tab, which
is the leftmost tab in the Android DDMS tool window. Press Ctrl+A | Cmd+A to select all the
text in the logcat window and then press Ctrl+C | Cmd+C to copy all this text, as shown in
Figure 11-16.

Android DDMS

LO BT logeat | ADB logs =" | /' Devices " =

o + 02-20 13:33:09.173 3346-3346/com. apress.gerber.currencies D/ViewRootImpl: ViewPostImelnputStage ACTION_DOWN
CE 02-20 13:33:12.913 3346-3346/com. apress.gerber.currencies D/ViewRootImpl: ViewFostImeInputStage ACTION_DOWN
+ 02-20 13:33:12.993 3346-3346/com.apress.gerber.currencies D/Dialeg? checkMirrorLinkEnabled returns : false
Eg 02-20 13:33:12.993 3346-3346/com.apress.gerber.currencies D/Dialog: showing allowed
02-20 13:33:13.083 3346-3346/com.apress.gerber.currencies D/ProgressBar: updateDrawableBounds: left = 0
o 02-20 13:33:13.083 3346-3346/com.apress.gerber.currencies D/ProgressBar: updateDrawableBounds: top = 0
B5 | 02-20 13:33:13.083 3346-3346/com.apress.gerber.currencies D/ProgressBart updateDrawableBounds: right = 144
02-20 13:33:13.083 3346-3346/com.apress.gerber.currencies D/ProgressBar: updateDrawableBounds: bottom = 144
ﬂ! 02-20 13:33:13.563 3346-3406/com.apress.gerber.currencies I/System.cut: RAsyncTask #2 calls detatch()
G 02-20 13:33:13.643 3346-3346/com.apress.gerber.currencies D/AndroidRuntime:! Shutting down VM

02-20 13:33:13.643 3346-3346/com.apress.gerber.currencies W/dalvikvm! threadid=1: thread exiting with uncaught excep
02-20 13:33:13.653 3346-3346/com.apress.gerber.currencies E/AndroidRuntime: FATAL EXCEPTION: main
Process: com.apress.gerber.currencies, PID: 3346
java.lang.NumberFormatException: Invalid double: "1..2"
at java.lang.StringToReal.invalidReal (Str:ingToR .Java:E3)
at java.lang.StringToReal.parseDouble (StriggToReal. Java:269)
at java.lang.Double.parseDouble(Doubls, Java:295)
at com.apress.gerber.currencies.Mainhctivity$CurrencyConverterTask.onPostExecute (Maindc
at com.apress.gerber.currencies.MainActivitysCurrencyConverterTask.onPostExecute (Maindc
at android.os.AsyncTask.finish{AsvncTask.java:£32)

Figure 11-16. Logcat window with verbose logs and stack trace

Choose Analyze » Analyze Stacktrace to invoke the Analyze Stacktrace operation. Any text
that was set to the clipboard will now appear in the Analyze Stacktrace dialog box. Click the
Normalize button and then click OK, as shown in Figure 11-17. The Run tool window will

be activated, and the stack trace will be visible (excluding any superfluous logs) along with
hyperlinked text showing the source of the exceptions, as shown in Figure 11-18. Analyze
Stacktrace does a fine job of parsing and displaying just the relevant stack trace, which can
be now be analyzed with ease.

CHAPTER 11: Testing and Analyzing 311

|_J Unscramble stacktrace

EU nzcrambler:

;_Lng file: =

Put a stack trace or a complete thread dump here:
02-20 13:33:09.173 3346-3346/com. apress.gerber.currencies D/ViewRcotImpl: ViewPostImeInputStage ACTION_DOWM

02-20 13:33:12.913 3346-3346/com. apress.gerber.currencies D/ViewRcotImpl: ViewPostImeInputStage ACTION_DOWN
02-20 13:33:12.993 3346-3346/com.apreas.gerber.currencies D/Dialogé checkMirrorLinkEnabled returns : false
02-20 13:33:12.993 3346-3346/com. apreas.gerber.currencies D/Dialog? showing allowed

02-20 13:33:13.082 3346-3346/com. apress.gerber. currencies D/F: Bar: updat 1 :left =0
02-20 13:3 3346-3346/com.apress.gerber. ies D/Prog Bar: updat B ds: tep = 0
02-20 13:33: 3346-3346/com.apress.gerber.currencies D/Prog Bar: upd.ar B ds: right = 144
02-20 13:33:13.083 3346-3346/com.apress.gerber.cur ies D/Pr Bar: updateD bleB: ds: bottom = 144

02-20 13:33:13.563 3346-3406/com.apreas.gerber.currencies I/System.ouc: AsyncTask #2 calls detatch()
02-20 13:33:13.643 3346-3346/com.apreas.gerber.currencies D/AndroidRuntime: Shutting down VM
02-20 13:33:13.643 3346-3346/com.apress.gerber, currencies W/dalvikvm: threadid=1: thread exiting with uncaught exception
02-20 13:33:13.653 3346-3346/com. apreas.gerber. currencies E/AndroidRuntime: FATAL EXCEFTION: main
EBrocess: com.apress.gerber.currencies, FID: 3346
java.lang.WurberFormatException: Invalid double: "1..2"
at java.lang.StringToReal.invalidReal (StringToReal.java:63)
at java.lang.StringTcReal.parseDouble (StringToReal.java:269)
at java.lang.Double.parseDouble (Double.java:295)
at com.apress.gerber.currencies.MainAccivityiCurrencyConvercerTask.onPostExecute (MainActivicy.java:3i4)
AT com.apress.gerber,currencies.MainhetivitysCurrencyConverterTask.onFostExecute (MainActivity.java:284)
at android.os.hsyncTask.finish(hAsyncTask.java:632)
at android.os.RsyncTask.access$600 (AsyncTask.java:177)
at android.os.AsyncTaskéInternallandler.handleMessage (RsyncTask.java:€45)
ar andrnid na Handlar AfanarchMasasms (Handlar dava-1021

B

[V] Automatically detect and analyze thread dumps copied to the clipboard outside of Intelli) IDEA

[C] Show changedinlast 21 days

Figure 11-17. Analyze Stacktrace dialog box with contents of entire clipboard

Figure 11-18. The Stacktrace window showing only the relevant stack trace and hyperlinks to the exception’s source

Run P> <Stacktrace>
4 02-20 ...
i at java.lang.StringToReal.invalidReal)
+ at java.lang.StringToReal.parseDouble (:
gg at java.lang.Double.parseDouble ([
&t com.2press.gerber.currencies. ﬁ?1W?-WJ&.!’%Q&IRRWMCOQVRHQ:TME onPostExecute (Mainactivity. java:334)
E at com.apress.gerber.currencies.MainActivitysCurrencyConverterTask.onPostExecute (MainActivity. java:284)
@ at android.os.AsyncTask.finish(A (]
G at android.os.AsyncTask. 600(As
i at android.os. Mync‘.l'asicsInr.erna1Handler.hmdlenessaqe
B at android.os.Handler.dispatchM
at android.os.Looper.loop(
X i at android.app.ActivityThread.main(5731)
® at java.lang.reflect.Method.invokeNative (Native Method) <1 internal calls>
at com.android.internal.os.ZygotelnitsMethodAndArgsCaller.run
at com.android.internal.os.Zygotelnic.main(Z)
at dalvik.system.NativeStart.main(Native Method)02-20 13:38:13.763 3346-3346/com.apreas.gerber.currencie
Dependency Viewer #e5:Debug B Inspection B TODO o 6:Android [F Terminal EH Version Control M) 8: Changes @

312 CHAPTER 11: Testing and Analyzing

You can either use Git to revert the last commit, or uncomment the bug fix as shown in
Listing 11-4.

Listing 11-4. Uncomment the Bug Fix

mCalcButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {

if (isNumeric(String.valueOf(mAmountEditText.getText()))){
new CurrencyConverterTask().execute(URL_BASE + mKey);
} else {
Toast.makeText(MainActivity.this, "Not a numeric value, try again.",
Toast.LENGTH_LONG) . show();

}
b

Summary

In this chapter, we’ve shown you how to use some of the testing and analytical tools
available in Android Studio. We’ve also shown you how to use the testing tools to identify
bugs, and then we proceded to fix a bug. Finally, we covered instrumentation testing,
Monkey, Lint, and Android Studio’s own analytical tools.

Chapter

Debugging

The more complex your app becomes, the more likely it will contain errors. Nothing
frustrates a user more than an app that crashes, fails to run under certain conditions, or gets
in the way of the task that it was intended to accomplish. A naive approach to development
is to assume that your code will always execute along the paths you define. This is
sometimes referred to as the happy path.

Understanding where code can deviate from the happy path is vital to becoming a good
software developer. Because you cannot predict all the potential unhappy paths during
development, it helps to develop an understanding of the various diagnostic tools and
techniques involved in Android development. Chapter 11 covers the Anytical tools; this
chapter explores the debugger in detail and revisits some other analytical tools that you can
use not only to fix errors, but also to gain insight on potential weaknesses as you work.

Logging

The first tool many developers reach for in Android is the Android logging system. Logging
is a means of printing values of variables or the state of the program to the system console
that can be read as the program runs. If you have a background in programming, you may
be familiar with this technique. However, logging takes a slightly different form in Android
than it does on other platforms. The first variance is in the function or method calls you may
be used to on a vanilla Java platform. Android apps are developed on one machine but
executed on another, and as a result the printed output is tucked away on the device where
the code is running.

The framework responsible for log messages on Android is called logger. It captures output
from a variety of events not limited to your application and stores that output in a series

of circular buffers. A circular buffer is a list-like data structure similar to a linked list, but in
addition to linking its elements in a serial way, it also links its last element to its first. These
buffers include radio, which contains radio and telephony-related messages; events, which
contains system event messages such as the notifications of the creation and destruction
of services; and main, which contains the main log output. The SDK provides a set of

313

http://dx.doi.org/10.1007/9781430266013_11

314 CHAPTER 12: Debugging

programming and command-line tools for examining these log messages. Viewing the logs
from all of these events is similar to cutting a fire hose to take a sip of water. As a result, you
can use various operations and flags to pare down the output.

Using Logcat

From the command line, you can use Logcat, which connects to an attached device and
relays the contents of these circular buffers to your development console. It takes a variety
of options, and the syntax for invoking it is given in Table 12-1.

adb logcat [option] ... [filter] ...

Table 12-1. Logcat Options and Filters

Log Options and Filters Description

-C Clears or flushes the log.

-d Dumps the log to the console.

-f <filename> Writes the log to <filename>.

-8 Displays the size of the given log buffer.

-n <count> Sets the number of rotated logs. The default is 4. This option requires
the -1 options.

-r <kbytes> Rotates the log file for every number of kilobytes given. The default is
16, and this option requires the -f option.

-s Sets the default filter to silent.

-v <format> Sets the format of the output to one of the following:

brief displays the priority, tag, and PID of the process issuing the
message.

process displays only the PID.
tag displays only the priority and tag.
raw displays the raw log message, without any other fields.

time displays the date, invocation time, priority, tag, and PID of the
process issuing the message.

threadtime: Displays the date, invocation time, priority, tag, and the
PID and thread ID (TID) of the thread with each message.

long displays all fields and separate messages with blank lines.

-b <buffer> Displays log output from the given buffer. The buffer can be one of
these:

radio contains radio/telephony-related messages.
events contains event-related messages.

main is the main log buffer (default).

CHAPTER 12: Debugging 315

Each message in the logs has a tag. A tag is a short string that usually represents a
component emitting the message. The component could be a View, a CustomErrorDialog, or
any widget defined within an application. Each message also has an associated priority that
determines the importance of the message. Priorities are as follows:

V: Verbose (the lowest priority)

D: Debug

I: Info

W: Warning

E: Error

F: Fatal

S: Silent (the highest priority, whereby everything is omitted from the logs)

You can control the output of Logcat by using filter expressions. Using the correct
combination of flags will help you focus on the output relevant to your investigation. Filter
expressions take the form of tag:priority. For example, MyBroadcastReceiver:D would
include only log messages from the MyBroadcastReceiver component that are marked with
Debug priority.

Android Studio includes a built-in Devices Logcat viewer that handles the specifics of the
command line by using graphical controls. Plug in your device or start the emulator and then
click the number 6 tab at the very bottom of the IDE to open the DDMS viewer. Select the
Devices | Logcat tab if it is not already selected. Your screen should look like Figure 12-1.

B9 | pences iiopent 08 1o+ B1 Loglevet [Vebose B (-) [NoFaen - |
| e Deves + s logeat -
a s T 2
[I Motorola XTIOZ Ancroid 4.4 (AP119) n 10-26 18:54:24.322 1076=1120/7 L2 |
i ® 10-26 18:54:34.343 1076-1130/7 D/WifiStatedachize BandleMessepe: X -
- 10-26 180:94:35.222 1076-1130/2 t
Al 10-26 18:54:25.322 1076-1120/7 t
| 10-26 18:54:25.323 1076-1120/7 D, +
» 10-26 18:54:35.339 1076-1130/7 D/WifiStateMachine’ Bandlaessege: X
10-26 10:54:36.320 1074-1130/2 I mag.vhat=151572 =]
10-2¢ 10:854124.22) 1076-1120/7 ’
10-26 18:54:26.324 1076-112077 D/ L
! 10-26 18:54:36.047 1076-1130/7 D/MAZiStatedachise’ BandlaMessepe: X G
&]
B s g soges [URRSEN > s 2 To00 s erertiog ot Comot
[Gradie busld finivhed in 3 sec flodey 242 PM) 1% CmF: UTHE B @ @

Figure 12-1. The Android DDMS tool window

In the top-right corner of this view, you will see three important filter controls. The Log Level
drop-down list controls the filtering by priority. In Figure 12-1, this option is set to Verbose,
which logs all messages. Setting Log Level to Debug would include all messages that are
Debug priority or higher. Next to this drop-down list is a manual text-entry control, which
restricts the messages to only those that contain the text you type here. Clearing the entry
clears the filter. The next drop-down list includes a set of preset filters and an option to edit
or change these presets. Click Edit Filter Configuration to open the Create New Logcat Filter
dialog box. This dialog box, shown in Figure 12-2, includes controls to modify any of the
preset filters.

316 CHAPTER 12: Debugging

r hl
& Create New Logcat Filter ﬂ

= Name: lapp: com.apress.gerber.debugme

EllRCn eI Filter logcat messages by different parameters,

Empty fields will match all messages.

by Log Tag (regex): [

by Log Message (regex): |

by Package Name: | com.apress.gerber.debugme

by PID: [

by Log Level: I Verbose n

n Cancel |

— V]

Figure 12-2. The Create New Logcat Filter dialog box

You can also add, change, or remove any custom filter. These presets can filter by tag,
package name, process ID (PID), and/or log level.

Writing to the Android Log

When your app runs, you may want to know that a method is actually executing, that
execution makes it past a certain point in the method, or the values of certain variables.

The SDK defines static methods on a class called android.util.Log, which you can use to
write to the log. The methods use short names—uv, d, I, w, e, and f—which correspond to
the Verbose, Debug, Info, Warn, Error, and Fatal priorities. Each method takes a tag and a
message string and optionally a throwable. The method you choose determines the priority
that is associated with the message you supply. For example, the following snippet is a log
you might find in an activity. It will log the text onCreate() with Debug priority while using the
name of the class as the tag:

protected void onCreate(Bundle savedInstanceState) {
Log.d(this.getClass().getSimpleName(), "onCreate()");
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

Bug Hunt!

Most developers focus primarily on writing software that works. This section introduces you
to an app that does not work! It was intentionally written with problems as an exercise in
debugging. This simple math-test app has a couple of text-input fields for entering arbitrary
numbers. An operator drop-down lets you pick from addition, subtraction, multiplication,
and division. In a text input field at the bottom, you can attempt to answer the math problem
that you build. A Check button enables you to check the answer. Read through the code in
Listing 12-1 to see how it works.

CHAPTER 12: Debugging

Listing 12-1. The DebugMe App

<Framelayout

android:layout_width="fill parent"
android:layout_height="fill parent"
xmlns:android="http://schemas.android.com/apk/res/android"
android:background="@android:color/black">

<TextView
android
android
android

android:

:layout_width="wrap_content"
:layout_height="wrap_content"
:textAppearance="7?android:attr/textAppearancelLarge"
android:
android:
android:
android:

text="Math Test"

id="@+id/txtTitle"
layout_gravity="center_horizontal]|top"
layout_marginTop="10dp"
textColor="@android:color/white" />

<Relativelayout

android:
android:
android:

layout_width="fill parent"
layout_height="fill parent"
layout_gravity="center">

<EditText
android:layout width="wrap content"
android:layout_height="wrap_content"
android:id="@+id/editItem1"
android:text="25"
android:layout_above="@+id/editItem2"
android:layout_centerHorizontal="true"
android:layout_alignStart="@+id/editItem2"
android:textColor="@android:color/white" />

<Spinner

android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:id="@+id/spinOperator"
android:layout centerVertical="true"
android:layout_tolLeftOf="@+id/editItem2"
android:layout_alignBottom="@+id/editItem2"
android:spinnerMode="dropdown" />

317

318 CHAPTER 12: Debugging

<EditText
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/editItem2"
android:text="50"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:layout_margin="25dp"
android:textColor="@android:color/white" />

<EditText
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="\???"
android:id="@+id/editAnswer"
android:layout_below="@+id/editItem2"
android:layout_centerHorizontal="true"
android:layout_marginlLeft="25dp"
android:textColor="@android:color/white" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearancelarge"
android:text="="
android:id="@+id/textView"
android:layout_below="@+id/editItem2"
android:layout tolLeftOf="@+id/editAnswer"
android:textColor="@android:color/white" />

<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_marginLeft="25dp"
android:text="Check"
android:onClick="checkAnswer"
android:layout_toRightOf="@id/editAnswer"
android:layout_alignBottom="@id/editAnswer"
android:textColor="@android:color/white" />

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 12: Debugging 319

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearancelarge"”
android:text="The answer is:\nXXX"
android:id="@+id/txtAnswer"
android:layout_below="@+id/editAnswer"
android:layout_centerHorizontal="true"
android:textColor="@android:color/holo_red light"
/>
</Relativelayout>
</Framelayout>

public class MainActivity extends Activity {

private static final int SECONDS = 1000;//millis
private Spinner operators;
private TextView answerMessage;

@0verride

protected void onCreate(Bundle savedInstanceState) {
Log.d(this.getClass().getSimpleName(), "onCreate()");
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
answerMessage = (TextView) findViewById(R.id.txtAnswer);
answerMessage.setVisibility(View.INVISIBLE);
operators = (Spinner) findViewById(R.id.spinOperator);
final ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,

R.array.operators_array, android.R.layout.simple spinner item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
operators.setAdapter(adapter);

public void checkanswer(View sender) {
InputMethodManager imm = (InputMethodManager)getSystemService(Context.INPUT METHOD
SERVICE);
imm.hideSoftInputFromWindow(findViewById(R.id.editAnswer).getWindowToken(), 0);
checkAnswer (sender);

320 CHAPTER 12: Debugging

public void checkAnswer(View sender) {
String givenAnswer = ((EditText) findViewById(R.id.editAnswer)).getText().toString();
int answer = calculateAnswer((EditText) findViewById(R.id.editItem1),
(EditText) findViewById(R.id.editItem2));
final String message = "The answer is:\n" + answer;
if(Integer.parseInt(givenAnswer) == answer) {
showAnswer (true, message);
} else {
showAnswer (false, message);

}

eventuallyHideAnswer();

private int calculateAnswer(EditText item1, EditText item2) {
int number1 = Integer.parseInt(itemi.getText().toString());
int number2 = Integer.parseInt(item2.getText().toString());
int answer = 0;
switch(((Spinner) findViewById(R.id.spinOperator)).getSelectedItemPosition()) {
case 0:
answer = numberl + number2;
break;
case 1:
answer = numberl - number2;
break;
case 2:
answer = numberl * number2;
break;
case 3:
answer = numberl / number2;
break;
}

return answer;

private void showAnswer(final boolean isCorrect, final String message) {
if (isCorrect) {
answerMessage.setText("Correct! " + message);
answerMessage. setTextColor(getResources().getColor(android.R.color.holo green light));
} else {
answerMessage.setText("Incorrect! " + message);
answerMessage. setTextColor (getResources().getColor(android.R.color.holo red light));

}
answerMessage.setVisibility(View.VISIBLE);

CHAPTER 12: Debugging 321

private void eventuallyHideAnswer() {
final Runnable hideAnswer = new Runnable() {
@0verride
public void run() {
answerMessage.setVisibility(View.INVISIBLE);

}
};
answerMessage.postDelayed(hideAnswer,10 * SECONDS);

}

We have an activity that allows users to try to solve a simple math problem. The

onCreate() method saves all of the view components in instance variables and plugs

the basic operators (plus, minus, multiplication, and division) into the ArrayAdapter. The
checkanswer() method hides the keypad before calling the overridden checkAnswer ()
method, which does the actual work of checking our answer. This overridden checkAnswer ()
method calls a calculateAnswer() method to find the actual answer. The checkAnswer()
method then compares the answer to the given answer and builds an answer message.

If the answer matches the given answer, then showAnswer () is invoked with a true value
indicating success; otherwise, showAnswer () is invoked with false. Finally, the checkAnswer ()
method eventually hides the answer message by invoking the eventuallyHideAnswer()
method, which posts a Runnable block of code to execute after 10 seconds.

As you begin to use this app, you may not notice the bugs, but they will crop up soon
enough. If you read through the example code and typed it in yourself prior to running it, you
may be sensitive to its obvious weaknesses. Leave the default answer or try to answer and
tap the Check button. The app will crash immediately. Try to run it again. This time, enter

an incorrect answer for the math problem and tap the Check button. There is no visible
feedback telling you whether the answer is correct! You may think you know where the
source of the crash is located, but instead of guessing at the assumed problem, we will try
to isolate the bug properly with the debugger.

Using the Interactive Debugger

Android Studio includes an interactive debugger that allows you to set breakpoints. You

set a breakpoint by clicking the gutter along the left margin of the Editor at the line you
wish to examine. Keep in mind that the breakpoint must be set on a line that contains an
executable statement; you could not, for example, set a breakpoint on a line that contains
a comment. When you set a breakpoint, Android Studio adds a pink circle icon in the gutter
and highlights the entire line in pink. When running an application in debugging mode,

and the program execution reaches a breakpiont, the circle in the gutter turns red, the

line is highlighted, and execution pauses and enters interactive debugging mode. While in
interactive debugging mode, much of the application state is displayed in the Debug tool
window, including variables and threads. The state of the program may be examined in detail
or even changed.

322 CHAPTER 12: Debugging

To start debugging, you can either launch the program in debug mode by clicking the bug
icon in the top toolbar or click the icon just to the right of the bug icon. This will attach the
debugger to the program while it is running (see Figure 12-3). The approach you choose
depends on the problem you are trying to catch. Your bug may manifest under real-world
conditions, so you’ll need to carry the device to a specific location or use it in a specific
way. Tethering the device to your computer under these conditions could be inconvenient. In
these situations, it would make sense to get your device into a state in which the bug begins
to manifest and then tether the device to your computer to launch the debugger. However,

if the bug occurs early on as the app launches, it may make sense to start in debug mode
so the execution can be immediately paused while the app starts. In a third approach, you
can set an app as debuggable from the Android device settings and have it wait for the
debugger to attach. This is helpful when you are trying to catch a problem that occurs when
the app starts but you don’t want to upload and replace the actual app that has already
been installed on the device.

rain\java\com\apress\gerber\debugme\MainActivit

Run | Attach debugger to Android process |
P [Wapp~| P ¥ % E

D E1 apress. - [51 gerber debugme. + 1€ Mair

| . e | em
i< | © MainActivityjava X | ® arraysxml X

Figure 12-3. Attach the debugger while running

We will begin by adding breakpoints at the first line of each method in MainActivity. This
approach works well when you aren't sure exactly where the problem is and there aren't
too many methods. However, it doesn't scale as your app grows in complexity. Click the
gutter in the left margin to add breakpoints on the first line of each method. You should see
something similar to Figure 12-4.

CHAPTER 12: Debugging

]

323

g ® public class MainActivity extends RActivity |
]
- private static final int SECONDS = 1000;//m1llis
private Spinner operators;
g private TextView answerMessage;
s
in @0verride
i gt 5] protected void onCreate (Bundle savedInstanceState) {
v [] Log.d(this.getClass () .getSimplaNama (), "onCreate()"):
i super.onCreate (savedInstanceState);
setContentView (R.layout.activity main);
answerMessage = (TextView) findViewById(R.id.txtinswer):
answerMessage.setViasibility (View. INVISIBLE) ;
operators = (Spinner) findViewById(R.id.spinOperator);
final Arrayhdapter<Char$s > adap = Rrrayhd .createFromR rce(this,
R.array.operators array, R.layout.simple spinner item);
adapter.setDroplownViewResource (R. layout.simple spinner_ dropdown item);
t operators.setAdapter (adapter);
a
g public void c awer (View sender) {
| F/HL han cheack the ansvear
o InputMethodManager imm = (InputMs] vice (Context.INPUT METHOD SERVICE):
imm.hideSoftInputFromWindow (findViewById (R.id.editAnswer) .getWindowToken(), 0);
| checkAnswer (aender);
a }
5] public void checkAnawer (View sender) {
® String givenAnswer = ((EditText) findViewById(R.id.editAnswer)).getText().toString():
i int answer = calculateAnswer((EditText) findViewById(R.id.editIteml), (EditText) findViewById(R.id.editItem2));
final String message = "The answer is:\n" + anawer;
B if (Integer.parselnt(givenAnswer) == answer) |
.E howh r(true, ge):

Figure 12-4. Add breakpoints to each method in the MainActivity class

Click Run » Debug App and wait for Android Studio to build and launch your app on the

device. As the app starts up, you will see a brief dialog box indicating that the adb (Android

Debug Bridge) is waiting for the debugger to attach before the IDE makes the connection.

Then Android Studio will eventually highlight (in blue) the first breakpoint at the onCreate()

method line, as shown in Figure 12-5. The Debug tool window will open, and the IDE will

even request focus and jump to the front of the screen if you happen to be running another

program while you wait for the breakpoint. This can be convenient but disrupting if you

happen to be using a social networking or chat app because your keystrokes might go into

the Editor and corrupt your code, so beware!

324 CHAPTER 12: Debugging

e £ Vo Hovgute Aewhyze Befector Guld Ran Took NG5 Widow Help
DHD ¥4 KOS QAR &> ([Rwex] > %R ¥& | FLES ? Q

B public class Maindccivity extends Activicy |

private statie final int SECONDS = 1000;//=i11is
private Spinner operators:

apurwEe) u

E private TextView answarMessage;

2 foverzice

vy e ted void snCreste (Bundle asvedlnstenceState) -
L]

‘super.onCreate {savedinstanceState) ;
seContentView(R. layous. activity main);
- 14, :

SerVisinility (Viev.

oparators = (Spianer) findViewSyld(R.id.spiadperator):
final adapee:

T -

ApRD (5, R i a-

R. tors_array, B.l imple_spinner_item};
sdapres layour.sisple spinner dropdows ites):
operators. setidapter (sdapter) ;

|

= Varlables | R watches -
» Sthasl st |+ -5

= savedinstanceState s rll
B | B petomCarate): 5248, Actwity fandroid. apa) & womidesge s mall

Mo wabchees

| performbaunchactivity()-7162, ActivityThread
E LT | handietaunchactivity0:2257, Activiy Thread (¢

1) handieMessageil1210, Activity Thread§H (and
= 1) dispatchhessage(:102, Handier fondroid.os)
B, (1) 10op0:136, Locper fandresd.os)

1) main(:8086, ActwvityThread fadoid apa)

B imvoketative(:-1, Method (java.lang.reflect) |
) invoke(515, Method (fova lang.reflect)
- R T kg b e

Igm“‘m .smu. [Terminat g Messages i W1 bventtog__ B Grade Console

Gradie build finis it |11 CRIF: UTFB: » @

o Buid

Figure 12-5. Execution stops at a breakpoint and highlights it blue

With the first breakpoint glowing blue, the Debug tool window opens from the bottom pane
and you can begin examining the state of the program at this point. The Debug tool window
has features you can use to drill down into different areas of the execution and controls you
can use to step in, out, and over methods. The current line happens to be an invocation of
the Log.d() method, which sends a line of text to Logcat. Click the Logcat tab to display
logs and then click the Step Over button [§ to execute the log statement. The Logcat shows

the log message and execution moves to the next line, as shown in Figure 12-6

el layout main) ;
= (TextcVi findVi id.
I setVisibil '+ INVISIBLE) ;
- ' {R.id :
final adapter = '
R.array.operators_array, R.layout.simple spinmer_ item);
asdaprer (R.layout.simple spinner dropdown item):

i oparators.sethdapter (adapter);
}

B public veid gheckanswer(View sender) |
/78I d

< gt [=[RS LD

11-16 20:32:01.462 27576-27576/com.apress.gerber.debugme W/ActivityThread:! Application com.apress.gerber.debugme is waiting for the debugger cn port E100...
11-16 20:45:03.553 27576-27576/com. apress.gerber.debugme D/Mainctivity® onCreate()

E=VD

Figure 12-6. The Logcat view shows the log message after stepping over

CHAPTER 12: Debugging 325

Click the Debugger tab to expose the variables view. Under this view, you should see three
variables: this, savedInstance, and answerMessage. Click the triangle next to this variable
to expand all of the variables associated with the this object. The this object always
represents the current class under execution, so all of the instance variables in the current
file will be visible as you drill down into it. You will also see a lot of other instance variables,
each of which is derived from the parent class. Sifting through so many variables can be
somewhat tedious, but it helps to understand the structure of the class you are currently
debugging. Collapse the this variable and click Step Over two more times to move the
execution point to the assignment of answerMessage. Note the sudden appearance of

the operator’s instance variable in the variables view. As the execution point nears the
assignment of instance variables, they begin to show in the variables view.

Evaluating the Expression

Before running the assignment statement that will set the answerMessage variable, you can
break down the line to see what the assignment will be before it happens. Click and drag a
selection over the findViewById(R.id.txtAnswer) expression and then press Alt+F8. You will
see a dialog box similar to Figure 12-7.

= Expression Evaluation g

|| Expression: |findViewByld(R.id.txtAnswer) ﬂ h

Press Enter to Evaluate or Control+Enter to evaluate and add to the Watches

= mAnimator = null
= mAttachinfo = null
= mBackground = null
= mTransformationlnfo = null
= mTouchDelegate = null
= mTag = null
= mSendViewStateChangedAccessibilityEvent = null
| = mClipBounds = null
| = mContentDescription = null
» = mContext = {com.apress.gerber.debugme.MainActivity @830035826520}
I = mCurrentAnimation = null
= mbDisplayList = null
» 12 mDrawableState = {int[2)@830035954728}
= mDrawingCache = null
L = mSendViewScrolledAccessibilityEvent = null

m l Close l i CodeFmgrnentMode‘ | Help

Figure 12-7. Using the Evaluate Expression dialog box

326 CHAPTER 12: Debugging

The expression will be copied into the Evaluate Expression dialog box and can be executed
independent from the rest of the line. This dialog box accepts any snippet of Java code

and displays its evaluated result. Click Evaluate (or press Enter since Evaluate is selected
by default) to evaluate and execute the expression. The dialog box will eventually be filled
with the result of the expression, and you can see the object that represents the TextView,
which holds the answer text. This is the same TextView you should eventually see when you
check the answer. The result is an object displayed in expanded form, which gives plenty
of information about the state of the TextView. You can examine the internal mText property,
text color, layout parameters, and more. Append a getVisibility() method invocation to
the expression, as shown in Figure 12-8.

&2 Expression Evaluation M

| Expression: |findViewByld(R.id.txtAnswer) getVisibility() n |

Press Enter to Evaluate or Control+Enter to evaluate and add to the Watches

[#] result =0

Figure 12-8. Examine the answer EditText’s visibility in the Evaluate Expression dialog box

The result of the findViewById(R.id.txtAnswer).getVisibility() expression is 0, which
is equal to the View.VISIBLE constant. It can be difficult to remember the values of the
constants, but you can use any expression in the expression evaluator. That means that by
using an expression such as the following, you can literally ask Android Studio, “Is my view
visible?”

findViewById(R.id.txtAnswer) == View.Visible

The result of the preceding line of code will be true; however, try to step over the next

two lines and execute the line that sets the view to invisible. Press Alt+F8 to bring up the
Expression Evaluator dialog box again and use the down-arrow key to cycle through earlier
expressions you evaluated and find the “Is my view visible?” expression. At this point, the
result should be false, which is expected. The idea is to hide the answer until the Check
button is tapped. Stepping through statements line by line gives you an understanding of
what is actually happening, while using the expression evaluator allows you to confirm the
value of a variable or an expression as the program runs.

Click the Run button in the debugger’s left control panel to resume normal execution. The
app will continue to complete the onCreate() method and run at normal speed until it
reaches another breakpoint. After onCreate() completes, the user interface should render
on your device or emulator. At this point, we can begin to address the actual problems.

The first problem arises when you attempt to check a given answer to the math question.
The keypad is never hidden, and the answer is never revealed. Tap the question marks to
activate the answer field TextEdit control, clear it, and type any number. Next tap the Check
button. Execution will pause at the first line’s checkAnswer () method even while you have a
breakpoint at the beginning of the first checkanswer () method. The intention here is that the
first checkanswer () method should be invoked where there is logic to hide the keypad. This
method then invokes the second checkAnswer () method to do the actual work of validating
the input. Because the first method was not invoked, the keypad stays visible!

CHAPTER 12: Debugging 327

Now that you know the cause of this problem, let’s examine other parts of the code to see
why the method is not invoked. Our example uses the onClick attribute in the activity main
layout file to connect the button to the method. Open the activity main layout file and you
will find the root cause. The onClick attribute of the Check button is set to checkAnswer
(using mixed case version), while you really want the onClick attribute to call checkanswer (all
lowercase version). Ignoring the obvious bad pattern of using two method names that differ
only in casing, fix the call in the android:onClick attribute, setting it to checkanswer. Now
click the debugger Stop button in the left control pane. This will detach the debugger and
allow the program to resume execution as normal. Build and run the app again to see the
results. You should see something similar to Figure 12-9.

6= M &
Iﬁl DebugMe

Math Test

Figure 12-9. The keypad is dismissed, and the answer’s TextView is visible

Using Stack Traces

You found and fixed two bugs by using the interactive debugger. However, more problems
exist. If you launch the app again and immediately tap the Check button, the app will
crash. You can use the interactive debugger to find the root cause or you can follow the
stack trace. A stack trace is a dump of every method on the stack at the time of the crash,
including line numbers. The stack refers to a series of methods, each one invoked by the
method just prior to it. Java represents program errors as Exception or Throwable objects.

328 CHAPTER 12: Debugging

These special objects carry metadata about the cause of the error as well as the program
state when the error occurred. Exceptions propagate up the program stack to the calling
method and its parent caller until they are caught and handled. If they are not caught and
handled, they will propogate all the way up to the operating system and crash your app. To
get a clear idea, it’s best to look at an example. Trigger the crash and then immediately look
in the logcat window under the Android DDMS tool window to find the stack trace.

Listing 12-2. The Stack Trace Produced When Check Is Tapped

03-08 20:10:56.660 9602-9602/com.apress.gerber.debugme E/AndroidRuntime: FATAL EXCEPTION: main
Process: com.apress.gerber.debugme, PID: 9602
java.lang.IllegalStateException: Could not execute method of the activity

at
at
at
at
at
at
at
at
at
at
at
at

Caused by:

at
at
at
at
at
at
at
at
at
at
at
at
at
at

Caused by:

at
at
at
at
at
at

android.view.View$1.onClick(View.java:3841)
android.view.View.performClick(View.java:4456)
android.view.View$PerformClick.run(View.java:18465)
android.os.Handler.handleCallback(Handler. java:733)
android.os.Handler.dispatchMessage(Handler.java:95)
android.os.Looper.loop(Looper.java:136)
android.app.ActivityThread.main(ActivityThread.java:5086)
java.lang.reflect.Method.invokeNative(Native Method)
java.lang.reflect.Method. invoke(Method. java:515)
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:785)
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:601)
dalvik.system.NativeStart.main(Native Method)
java.lang.reflect.InvocationTargetException
java.lang.reflect.Method.invokeNative(Native Method)
java.lang.reflect.Method.invoke(Method. java:515)
android.view.View$1.onClick(View.java:3836)
android.view.View.performClick(View.java:4456)
android.view.View$PerformClick.run(View.java:18465)
android.os.Handler.handleCallback(Handler.java:733)
android.os.Handler.dispatchMessage(Handler.java:95)
android.os.Looper.loop(Looper.java:136)
android.app.ActivityThread.main(ActivityThread.java:5086)
java.lang.reflect.Method. invokeNative(Native Method)
java.lang.reflect.Method.invoke(Method. java:515)
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:785)
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:601)
dalvik.system.NativeStart.main(Native Method)
java.lang.NumberFormatException: Invalid int: "???"
java.lang.Integer.invalidInt(Integer.java:137)
java.lang.Integer.parse(Integer.java:374)
java.lang.Integer.parselnt(Integer.java:365)
java.lang.Integer.parseInt(Integer.java:331)
com.apress.gerber.debugme.MainActivity.checkAnswer (MainActivity.java:46)
com.apress.gerber.debugme.MainActivity.checkanswer(MainActivity.java:39)

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 12: Debugging 329

at java.lang.reflect.Method.invokeNative(Native Method)

at java.lang.reflect.Method.invoke(Method.java:515)

at android.view.View$1.onClick(View.java:3836)

at android.view.View.performClick(View.java:4456)

at android.view.View$PerformClick.run(View.java:18465)

at android.os.Handler.handleCallback(Handler.java:733)

at android.os.Handler.dispatchMessage(Handler.java:95)

at android.os.Looper.loop(Looper.java:136)

at android.app.ActivityThread.main(ActivityThread.java:5086)

at java.lang.reflect.Method.invokeNative(Native Method)

at java.lang.reflect.Method.invoke(Method.java:515)

at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:785)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:601)
at dalvik.system.NativeStart.main(Native Method)

Stack traces can be rather long, depending on the complexity of your app, but learning to
navigate them is a valuable skill to add to your arsenal. In the preceding stack trace, you

will see various method names listed with line numbers. The first listed method, View$1.
onClick, is considered the top of the stack and is the most recent method that was invoked.
Next to the method name is a line number pointing to the actual line of source code where
the exception occurred. Because this class is not code that we have written as part of the
example, you have to look deeper in the stack. As you look down the stack, you will see
entries that begin with Caused By. The way to read this is as follows: you have an exception
that was caused by an exception that was caused by an exception, and so on. If you read
the last cause, you will find the actual problem, Invalid int: "???". The system is complaining
that you have passed an invalid integer value, a series of question marks, to the InvalidInt
method in Integer.java. This is part of the Android runtime and out of your control. However, if
you keep reading, you will see that invalidInt is invoked by a few more Java runtime methods
that were actually invoked by checkAnswer, which is in MainActivity.java. You can click

the line number in the Logcat view, and that will jump directly to the spot indicated in the
following snippet:

if(Integer.parseInt(givenAnswer) == answer) {
showAnswer (true, message);

} else {
showAnswer (false, message);

eventuallyHideAnswer();

At this point, after Check is tapped, we are passing the givenAnswer variable to the
Integer.parselnt method. A few lines earlier in the same method, you will see the following
code which initializes the givenAswer variable:

String givenAnswer = ((EditText) findViewById(R.id.editAnswer)).getText().toString();

330 CHAPTER 12: Debugging

The text value from the EditText control is stored in the givenAnswer String variable.
Before converting the value to a number, you should check whether it actually is a number
to prevent system crashes. Change the if block that calls Integer.parselnt to use the
following if/else if logic:

if(! isNumeric(givenAnswer)) {
showAnswer (false, "Please enter only numbers!");
} else if(Integer.parselnt(givenAnswer) == answer) {
showAnswer (true, message);
} else {
showAnswer (false, message);
}

Next define the isNumeric method as follows:

private boolean isNumeric(String givenAnswer) {
String numbers = "1234567890";
for(int i =0; i < givenAnswer.length(); i++){
if(!numbers.contains(givenAnswer.substring(i,i+1))){
return false;
}

}

return true;

}

The isNumeric() method tests each character against a list of all numerals. Should the
method return false, then the modified if block will call showAnswer () with an error
prompting the user to enter only numbers. With this in place, try running the app again. Tap
the Check button without changing the default answer with question marks. The crashing
behavior should be mostly taken care of. There is one more intentionally placed error in the
code, which can cause a crash. We explain a little later. Use the app to solve a few math
problems with some of the other operators beside addition to expose the crash. Take a
moment to use what you have learned to see if you can find it.

This section introduced the basics of debugging. Now you will explore the interactive
debugger in depth and visit more of its features. In Chapter 11, we discussed the Analyze
Stacktrace tool, which helps you parse long stacktraces.

Exploring the Interactive Debugger’s Tool Window

The debugger tool window includes controls to step over and into lines of code as you trace
the execution. The Frames tab, focused by default, displays the call stack. The call stack is
the stack of method calls that were invoked to get to the current breakpoint. In these stacks,
the method that was invoked last is at the top, while the method that called it appears just
beneath. The methods that belong to the Android runtime are shaded yellow to differentiate
them from methods defined in your project, which are shaded white.

Figure 12-10 depicts a call stack and focuses on two project methods. In this example,
the checkAnswer () method calls the calculateAnswer() method, so the calculateAnswer()
method is at the top of the stack.

http://dx.doi.org/10.1007/9781430266013_11

CHAPTER 12: Debugging 331

w calculateAnswer():67, MainActivity (com.apress.gerber.d

5] checkAnswer():44, MainActivity (com.apress.gerber.deb

Figure 12-10. Use the frames view to examine the call stack

®
The Step Over button Lo steps over the current line, to the next line. All instructions on the
current line, including any method calls, are executed imediately. The app will pause when it
reaches the following line.

The Step Into button r—; executes all instructions on the current line, up to the first method
call on that line. Execution is paused at the first line inside this first method call. If more than
one method call appears on the line, the normal order of operations defined by Java is
followed: execution proceeds from left to right, and nested methods execute first. Methods
defined in classes outside the project (such as third-party JAR files, and built-in Java and
Android API methods) are not considered. Execution steps over these methods.

The Force Step Into button '_: behaves similarly to the Step Into button, except externally
defined methods, such as those defined in the Android SDK, are also stepped into.

The Step Out button o completes the execution of all instructions in the current method
and steps out of the method, to the prior calling method in the call stack. Execution pauses
at the next line of code following the call to the method.

The Show Execution Point ’é button navigates you to the spot where execution is currently
paused. At times, you might navigate far away from your breakpoint and dive deep into your
code while debugging. You could be walking into various method calls or exploring a class’
callers by using some of the advanced features covered in navigation. Such exploration can
cause you to lose the context of the method you were originaly tracing. This option allows
you to quickly recalibrate and pick up where you started.

Working with the Breakpoint Browser

Tap Run & View Breakpoints to open the Breakpoints dialog box, shown in Figure 12-11.
This dialog box gives you an overview of all the breakpoints you have created in your app.

If you double-click any breakpoint from the list, the IDE will jump to that line of the source.
Selecting any breakpoint displays its details in the right-hand view. The detail view gives

you the ability to disable the breakpoint and control how and when the app will pause when
execution reaches the breakpoint. This view is filled with powerful options that allow you

to fine-tune the behavior of your breakpoints. You have the ability to run arbitrary program
statements, conditionally pause the app at interesting points, and even control the execution
of other breakpoints.

332 CHAPTER 12: Debugging

-

® Breakpoints E‘

J +-B@8 (V) Line 39 in MainActivity.java enabled |
v [¥] @ Java Line Breakpoints

B4 Line 99 in MainActivity java) suspend @ AN O Thread

[¥] Line 88 in MainActivityjava
[Line 67 in MainActivity.java
() Line 37 in MainActivity.java [Log message to console iters

Condition

[Line 43 in MainActivity.java

v [J @ Java Exception Breakpoints D Log cralusted Spreson L] Instance fitters
[ae coceniion 1
() Remove once hit [Class fitters
Disabled until selected breakpoint is hit: [Ij
. . - |
| <None> u
D Pass count:
b After breakpoint was hit: ’;_) Disable again C) Leave enabled [| l
N 98| private void eventuallyHideRnawer() {
29 @ final Runnable hi r = new le() {
100 goverride
101/} public wvoid run{) {

Figure 12-11. Set breakpoint properties with the Breakpoints dialog box

The first check box in the view enables and disables the breakpoint. The Suspend check box
controls how execution will behave when the breakpoint is reached. When this check box is
not selected, the breakpoint will be entirely disabled and have no effect on the app while it
runs. This feature is particularly useful when combined with some of the other options, such
as the Log Evaluated Expression option. The radio buttons next to the Suspend option will
cause the breakpoint to suspend either the entire app or the current thread, respectively.
This is an advanced feature that aids in debugging multithreaded apps with difficult-to-follow
behavior.

The Condition option allows you to specify a condition during which the breakpoint is
active. The drop-down accepts any valid Java Android code expression that evaluates to a
boolean. The code used in the expression executes within the context of the method where
the breakpoint is defined. As a result, the code has access to any of the variables that are
visible from that point in the method where it is defined. It follows the Java syntax rules for
scoping, which you can refer to for more details on visibility of variables. When the condition
is false, the breakpoint is ignored. When the condition is true, execution will pause when
the breakpoint is reached.

The Log Message to Console option emits a generic log message to the debug console
each time the breakpoint is reached. This generic message includes the fully qualified name
of the method and a clickable reference to the line number. To see this in action, go through
each breakpoint you have currently set in the Breakpoints dialog box. Deselect the Suspend
check box and select the Log Message to Console check box for each one. With the app
running, tap the Check button to trigger a call to checkanswer(). Activate the Console tab in
the debugger tool window to find the log messages from the debugger.

CHAPTER 12: Debugging 333

The Log Evaluated Expression option includes a text entry field that accepts any valid

Java code statement. Whenever the breakpoint is reached, the code in the drop-down is
executed and the result of evaluating the code is written to the debug console. Much like the
Condition option, this code runs within the context of the method in which it is defined. The
code follows the same variable visibility rules as the Condition option. Usually, you would
specify a Java expression that evaluates to a string, but understand that any Java statement
can be evaluated, even a Java assignment statement. This gives you the ability to insert
code as your app runs and even change the behavior!

The Remove Once Hit option allows you to define breakpoints that self-destruct. These are
useful when used in a tight loop, where multiple hits can obscure what you are attempting to see.

The Disabled Until Selected Breakpoint Is Hit option allows you to connect one breakpoint
to another. This option keeps the current breakpoint disabled until execution reaches the
breakpoint specified here. Suppose you have one method, foo, that repeatedly calls another
method, bar, that you are attempting to debug. You are trying to trace bar’s behavior when
foo invokes it. To complicate things, assume that several other methods also call bar. You
could place a breakpoint in both foo and bar and then select bar’s breakpoint and configure
this option to disable bar until the breakpoint in foo is reached.

Earlier we suggested there was another bug in the app that would cause a crash. This crash

may or may not be obvious. If you enter an expression similar to that in Figure 12-12, you will

trigger the bug. You can use any of the features you have explored in this chapter to debug

the crash. Looking at the stack trace will direct you straight to the source of the problem.
¢ Fam

Iﬁl DebugMe

Math Test

= 77?

Figure 12-12. Try a division problem to find a crash!

334 CHAPTER 12: Debugging

The arithmetic expression in the switch/case block needs to guard against dividing by the
number zero. Use the following snhippet to address the crash:

switch(((Spinner) findViewById(R.id.spinOperator)).getSelectedItemPosition()) {

case 0:
answer = numberl + number2;
break;

case 1:
answer = numberl - number2;
break;

case 2:
answer = numberl * number2;
break;

case 3:
if(number2 != 0) {

answer = numberl / number2;

}

break;

}

Conditional Breakpoints

One of the more tedious exercises in debugging is tracing errant behavior between repeat
method calls and loops. Depending on the complexity of your logic, you might spend
precious time stepping through lines of code waiting for a specific condition where your
logic misbehaves. To save time, Android Studio supports conditional breakpoints. These
are breakpoints that are only active under a given condition. To demonstrate, suppose you
wanted to support an exponent feature to the Math Test. Add an exponent operator to the
operators_array in arrays.xml as follows:

<resources>
<string-array name="operators_array">
<item>+</item>
<item>-</item>
<item>x</item>
<item>/</item>
<item>exp</item>
</string-array>
</resources>

Because you have added exp at index 4 in the array, you have to add another case block to
the calculateAnswer () method as follows:

case 4:
if (number2!=0) {
answer = 1;
for(int i=0; i <=number2; i++) {
answer = answer * numberi;
}

break;

CHAPTER 12: Debugging 335

What you have added is a naive loop to multiply the first number by itself using the second
number as a loop counter. The intentional bug may or may not be obvious to you at

this point. Build and run the app and try solving a math problem for 2 to the 8th power.
Figure 12-13 illustrates what you will get with these changes.

BEaOom < @020

I®! DebugMe

Math Test

Figure 12-13. The exponent answer is correct, but the app gives an error

The app is incorrectly calculating the answer as 512. You will use the interactive debugger
to find the problem. First, clear all your breakpoints to avoid any unnecessary pauses.

Click the attach debugger icon to enter interactive debugging mode and attach your
debugger. Now you could put a breakpoint in the middle of the for loop you just added,
step through 8 cycles and see why you get the wrong result. Alternatively, you could use a
conditional breakpoint to see what is happening on the last iteration. Click the gutter to add
a breakpoint on this line:

answer = answer * numberi;

Next right click the breakpoint and enter the expression i==8 in the condition field (shown in
Figure 12-14).

336 CHAPTER 12: Debugging

Irawable-xchdpi case 4:
: if (number2!=0) {
answer = 1;
for(int i=0; i <=number2; i++) |

simple_spinner_dropdown_item. ST — e e
e -

| cimnle_sninner_item yml |
E Line 89 in MainActivity.java enabled
| Suspend (& Al (O Thread

Condition Ii==3l

G 1 (g

[T I |

More (Ctrl+Shift+F8)

—r————

Figure 12-14. Set a condition for the breakpoint

Click Done to dismiss the popup and then tap the Check button on your device or emulator.
Execution will pause at your breakpoint, but only after the i counter has been increased to 8.
Look in the Variables view of the Debug tool window to see the state of all the variables. The
number1 variable is set to 2, the number2 variable is set to 8, and the answer is 256. However,
clicking step over at this point causes an extra multiplication to occur, which changes the
value. The intended behavior is for the loop to terminate after the 8th cycle, which it hasn’t.
If you look closely at the condition in the for loop, you will see how 1i is initialized to 0 as well
as a check for i<=number2. You need to check for i<number2 because i is starting from 0.
Make the change and then build and run the app normally to test it. Figure 12-15 shows the
app running after the change has been made.

CHAPTER 12: Debugging 337

(. O m & S @127

I8/ DebugMe

Math Test

= 256 Check

Correct! The answer is:
256

Figure 12-15.

Summary

In this section, you learned how to debug by using various tools and features found in
Android Studio. You discovered how to use logging at various levels and how to inspect
the Android logcat directly in the IDE. You explored the interactive debugger and studied
its advanced features. You also took a code dive in a broken app and used the debugging
tools to find and fix crashes. With the code example, you got familiar with navigating from
stacktraces and setting regular breakpoints and conditional breakpoints This chapter
covered only the basics of debugging in Android Studio. You can combine many of the
features in the debugger in creative ways to tailor your experience. You can also combine
the Android Logcat in your debugging sessions to get more insight into your app.

Chapter

Gradle

When Android was initially released, Google developed a build system based on Apache Ant
as part of the SDK. Ant is an established technology with several years of enhancements
and a huge community of contributors. Over the years, other build systems emerged, some
becoming popular with thriving communities. Among these build systems, Gradle emerged
as the next evolutionary step for Java development. This chapter explores Gradle and gives
examples of how to best use it for developing and maintaining your Android apps.

Before expounding on Gradle, this chapter explains what a build system is and why you
might need improvements on the existing build system. The process of creating apps or any
software has historically involved writing code in a particular programming language and
then compiling that code into an executable form.

Note There is a lab later in this chapter which explains the use of Gradle in a multi-module
project. We invite you to clone the lab for this project using Git in order to follow along, though

you will be recreating this project with its own Git repository from scratch. If you do not have Git
installed on your computer, see Chapter 7. Open a Git-bash session in Windows (or a terminal in
Mac or Linux) and navigate to C: \androidBook\reference\ (If you do not have a reference
directory, create one. On Mac navigate to /your-labs-parent-dir/reference/) and issue the following
git command: git clone https://bitbucket.org/csgerber/gradleweather.git
GradleWeather.

Modern software development involves not only linking and compilation but also testing,
packaging, and eventual distribution of your end product. A build system fills these
emergent needs by providing the necessary tools to accomplish these tasks. Consider the
list of emergent requirements many developers face today: supporting variations of the end
product (a debug version, a release version, a paid version, and a free version), managing
third-party software libraries and components included as part of the product, and adding
conditions to the overall process based on external factors.

339

http://dx.doi.org/10.1007/9781430266013_7
https://bitbucket.org/csgerber/gradleweather.git

This book was purchased by tanakasy@fukuoka-edu.ac.jp

340 CHAPTER 13: Gradle

The Android build system was originally written in Ant. It was based on a rather flat project
structure that didn’t offer much support for things such as build variations, dependency
management, and publishing the output of a project to a central repository. Ant has an XML
tag-based programming model that is simple and extensible, though many developers find

it cumbersome. In addition, Ant uses a declarative model. Although Ant follows some of the
principles of functional programming, many developers are comfortable with the imperative
model common in most modern programming languages. In short, things like loop constructs,
conditional branching, and reassignable properties (the Ant equivalent of variables) are not
directly supported.

A Gradle build is written in the Groovy programming language, which builds on top of Java’s
core runtime and API. Groovy loosely follows Java’s syntax which, when combined with its
syntax, lowers the learning curve. This adds to Groovy’s appeal because it is so close to the
Java language that you can port most of your Java code to Groovy with minimal change.
This also adds to Gradle’s strengths because you can add Groovy code at any point in

a Gradle build. With Groovy syntax being so close to Java, you can practically add Java
syntax in the middle of a Gradle build script to achieve the effect you want. Groovy also
adds closures to Java’s syntax. A closure is a block of code surrounded by curly braces
that can be assigned to a variable or passed to a method. Closures are a central part of the
Gradle build system that you’ll learn more about shortly.

Gradle Syntax

Gradle build scripts are actually Groovy script files that follow certain conventions. As such,
you can include any valid Groovy statement in your build. However, most are composed of
statements that follow simple syntax based on blocks. The basic structure of Gradle build
scripts comprises configuration and task blocks. Task blocks define code that is executed
at various points during the build. Configuration blocks are special Groovy closures that
add properties and methods to underlying objects at runtime. You can include other types
of blocks in your Gradle build scripts, but these are outside the scope of this book. You will
mostly work with configuration blocks, because the tasks involved in a Gradle Android build
are already defined. Configuration blocks take the following form:

label {
//Configuration code...
}

where label is the name of a specific object, and the curly braces define the configuration
block for the object. The code inside the configuration block takes the following form:

{

stringProperty "value"
numericProperty 123.456
buildTimeProperty anObject.someMethod()
objectProperty {

//nested configuration block
}

CHAPTER 13: Gradle k2|

The block can access the individual properties of the object and assign values to them.
These properties can be strings, numerics, or objects themselves. String properties can take
literal values or values returned from Groovy method invocations. Literal values follow rules
similar to Java. However, string literals may be indicated with double quotes, single quotes,
or any other means that Groovy uses to represent strings. Object properties use nested
blocks to set their individual properties.

Gradle build scripts follow a certain standard. Under this standard, the top of the build script
is where you declare Gradle plug-ins. These are components written in Groovy/Gradle that
add to or extend Gradle features. A plug-in declaration follows the form of apply plugin:
'plugin.id’, where plugin.id is the identifier for the Gradle plug-in you wish to use.

The Gradle tasks and configuration blocks follow the plug-in definitions in any order. It is
customary to declare the Android plug-in, which is an object available in the build script via
the android property. The project’s dependencies usually follow the Android configuration.
The dependencies list all of the libraries that support any external APIs, declared plug-ins,
or components that your project uses. The following is an example of a Gradle build script.
You’ll learn more about the specifics later.

Listing 13-1. A Gradle Build Script Example

apply plugin: 'com.android.application’

android {
compileSdkVersion 20
buildToolsVersion '20.0.0'

defaultConfig {
applicationId "com.company.package.name"
minSdkVersion 14
targetSdkVersion 20
versionCode 1
versionName "1.0"

}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),«
'proguard-rules.pro’
}
}

}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:support-v4:20.+'

342 CHAPTER 13: Gradle

IntelliJ Core Build System

Android Studio is built on the Intellid IDEA platform and inherits most of its functionality from
Intellid’s core. It adds further Android-specific functionality to the core in the way of plug-ins.
A plug-in is a software component that can be downloaded from the IntelliJ plug-in
repository and installed or removed in a pluggable fashion, almost like Lego blocks. These
plug-ins serve to enhance IntelliJ’s functionality, and each one can be enabled or disabled
by using the Settings window. The IntelliJ Gradle plug-in melds IntelliJ’s core build system
to the Gradle build system. Actions that would usually trigger an application build instead
invoke Gradle while the output is fed back through the IntelliJ core and formatted in a
manner that is familiar to Intellid.

Gradle Build Concepts

The Gradle build system is a general tool for building software packages from a collection
of source files. It defines some high-level concepts for building software that are consistent
for most projects. The most common concepts include projects, source sets, build artifacts,
dependency artifacts, and repositories. A project is a location on your hard drive that
contains a collection of all the project source code. A Gradle build will have a set of source
files that are represented as source sets. It will optionally have a list of dependencies.
These dependencies are software artifacts that can include anything from JAR or ZIP
archives to text files, to precompiled binary files. The artifacts are fetched from a repository.
A repository is a collection of artifacts that are organized in a special way to allow the build
system to find a given artifact. It can be a location on your hard drive or a special web site
that organizes artifacts by a standard convention. Each artifact can optionally include its own
set of dependencies that may be included in the build. The build combines the source sets
with the dependency artifacts to generate build artifacts. The build can optionally publish
these artifacts to a repository to make them available for other developers or teams.

Gradle Android Structure

Gradle Android projects have a hierarchical structure that nests subprojects or modules

in individual folders under the project root. This is analogous with how Android Studio’s
Intellid underpinnings have traditionally managed projects. With both Gradle and the Intellid
environment, a simple project could contain a single module, named app, and a few other
folders and files, or it could contain multiple modules with various names. The similarities
end there, as Gradle allows infinite nesting of modules. In other words, a project could
contain a module that also contains nested modules. As a result, the Android Studio build
system runs Gradle under the covers. The following list provides a brief description of the
individual files and folders contained in a typical Gradle Android project. This list focuses
mainly on the files you would be concerned with changing:

.gradle: Temporary Gradle output, caches, and other supporting
metadata are stored under this folder.

app: Individual modules are nested, by name, in a folder under the root.
Each module folder contains a Gradle project file that generates output
used by the main project. The simplest Android project will include a
single Gradle project that generates an APK artifact.

CHAPTER 13: Gradle 343

gradle: This folder contains the Gradle wrapper. The Gradle wrapper is
a JAR file that contains a version of the Gradle runtime compatible with
the current project.

build.gradle: The overall project build logic lives in this file. It is
responsible for including any required subprojects and triggering the
build of each one.

gradle.properties: Gradle and JVM properties are stored in this file.
You can use it to configure the Gradle daemon and manage how Gradle
spawns JVM processes during the build. You can also use this file to
help Gradle communicate when on a network with a web proxy.

gradlew/gradlew.bat: These files are the operating system-specific files
used to execute Gradle via the wrapper. If Gradle is not installed on your
system, or if you don’t have a version compatible with your build, then it
is recommended to use one of these files to invoke Gradle.

local.properties: This file is used to define properties specific to the
local machine, such as the location of the Android SDK or NDK.

settings.gradle: This file is required with multiproject builds, or any
project defining a subproject. It defines which subprojects are included
in the overall build.

Project.iml, .idea, .gitignore: You may notice any/all of these files in
the root directory upon creating a new project in Android Studio. While
these files (with the exception of .gitignore discussed in Chapter 7) are
not part of the Gradle build system, they are constantly updated as you
make changes to your Gradle files. They impact the way Android Studio
“sees” your project.

build: All of the Gradle build output falls under this folder. This includes
the generated source. Gradle is organized and intentional in keeping all
output to a single folder. This simplifies the project, as the list of things

to exclude from your version control is less daunting, while cleanup is a
matter of deleting a single folder.

Project Dependencies

Gradle simplifies dependency management in a way that makes it easy to use and

reuse code across several projects, regardless of the platform. When a project grows in
complexity, it makes sense to break it into separate pieces, which are referred to as libraries
in Android. These libraries can be developed independently in separate Gradle projects or
collectively in a multimodule project in Android Studio. Because Android Studio handles
modules as Gradle projects, the lines can really blur, which leads to powerful possibilities for
code sharing. Calling objects in code developed by another team across the globe is nearly
identical to calling objects that exist locally in a separate module! When code in your project
needs to invoke code in another Gradle project or in another Android Studio module, you
need only to declare a dependency in your main project to tie the code together. The end
result is a seamless stitching together of separate pieces into a cohesive application.

http://dx.doi.org/10.1007/9781430266013_7

344 CHAPTER 13: Gradle

Consider a simple case in which your application needs to invoke a method, bar, in an
external class Foo. With classic Android tools, you would have to locate the project that
defines class Foo. This could involve downloading from the Web, or even an arduous web
search if you aren’t quite sure of the project location or home page of the project. You would
then have to do the following:

Save the downloaded project to your development computer
Possibly build it from source

Find its output JAR file and copy or move it into the 1ibs folder of
your project

Likely check it into source control

Add it to your library build path if your IDE or tool set doesn’t automate
this for you

Write the code to call the method

All of these steps are prone to error, and many would need to be repeated if the project uses
JARs or code from other projects. Also different versions of the project can sometimes be in
different locations or incompatible with other projects that you have already included in your
app. If the project is maintained by another team in your company, you could run into issues
with the lack of a prebuilt JAR, which means you would need to combine the build file from
another team with your build file, which could dramatically increase the time and complexity
involved in building your app!

With Android Studio and Gradle, you can skip all of the chaos. You need only to declare the
project as a dependency in your build file, and then write the code to call the method. To
understand how dependencies are declared, recall the example Gradle build file introduced
earlier in this chapter that included the following block:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:support-v4:20.+'

}

The first compile line instructs Gradle to grab all the JAR files under the 1ibs folder as part of
the compile step. This is similar to how classic Ant build scripts worked with dependencies and
is included primarily for compatibility with older projects. The second compile line tells Gradle
to find version 20 or higher of the support-v4 library organized by the com.android. support
group from the repository and make it available in the project. Remember that a repository is an
abstract location containing a collection of prebuilt artifacts. Gradle will download dependency
artifacts from the Internet as needed and make them available in the classpath for the compiler
as well as package them with your resulting app.

Case Study: The Gradle Weather Project

In this section, you will examine a project, Gradle Weather, that will expose various types of
Gradle builds incrementally. This project displays the weather forecast. While some of the
implementation uses moderately advanced features, we will focus primarily on the build files
that stitch the app together and truncate many of the source listings. There are branches for

CHAPTER 13: Gradle 345

each step of the walk through. The Git repository for this project is marked with branches
for the individual steps in this study. You can refer to these steps throughout the chapter by
checking them out one by one or by looking at the changelists associated with them in the
Git log. Feel free to explore the source in depth.

We begin Gradle Weather with a minimalistic implementation that presents a fake weather
forecast. Open the Git log and find the branch named Step1. Right click this branch and
choose new branch from the context menu to create a new branch as shown in

Figure 13-4. Name this branch mylocal. You will make commits against this branch as
you follow along. Built from the FullScreen Activity template, Gradle Weather uses the
SystemUiHider logic that is generated as part of this template. It launches with a splash
screen that runs on a 5-second timer and simulates the loading of the weather forecast

by drawing data from a hard-coded plain old Java object called TemperatureData. This
TemperatureData object is given to an Adapter class to populate a list view filled with
forecasts. (The ListView component is discussed in depth in Chapter 8.) TemperatureData
uses a Temperatureltem class that describes the forecast for a given day. The build script
code for the project follows the same standard Gradle Android project structure defined
previously. First you’ll examine the files in the root folder responsible for the Gradle build.
Figure 13-1 and Listings 13-2 through 13-5 detail the code behind the core files controling
the build.

Listing 13-2. Settings.gradle

include ':app

Changes: | Local | Shelf m

Filter: @') Branch: All 3 User: All # Date: All 3 Structure

R . Subject
Adds new WeatherRequest module.

Adds Stepl, the basicimalacantation
(master | origin/master |) Copy Hash
’ il S] Create Patch...
Adds 3rd pa o e loadi
ifton _Pi
Adds logo, tArr;:g;Jprogre € Cherry-Pick d locks the orientation to portrait.
Adds asynchronous image Sletilainil
New

Refactoring. Fixes typos an e ranch s

ew Ta :
Refactoring. Extracts a Parsc v u.ag-u.
Refactoring. Shuffles private methods to the bottom of the file.

tudio 1.X. Bumps the Gradle version,

Step1

abd970d175f11cc668dc6759978b09beff1c2423
Clifton Craig at 4/25/2015 7:59 PM

Figure 13-1. Create a new branch from the Step1 branch

http://dx.doi.org/10.1007/9781430266013_8

346 CHAPTER 13: Gradle

Listing 13-3. Root build.gradle

buildscript {
repositories {
jcenter()
}

dependencies {
classpath 'com.android.tools.build:gradle:0.12.+'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}

allprojects {
repositories {
jcenter()

}

Listing 13-4. local.properties
sdk.dir=C\:\\Android\\android-studio\\sdk

Listing 13-5. app\build.gradle

apply plugin: 'com.android.application’

android {
compileSdkVersion 20
buildToolsVersion '20.0.0'

defaultConfig {
applicationId "com.apress.gerber.gradleweather"”
minSdkVersion 14
targetSdkVersion 20
versionCode 1
versionName "1.0"

}
buildTypes {
release {
minifyEnabled true
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro’
}
}

}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:support-v4:20.+'

CHAPTER 13: Gradle 347

The settings.gradle file only defines the path to the app subproject. Next is build.gradle,
which includes a buildscript { ... } block. The buildscript block configures the current
build file. It includes the only subproject in the application, app. Next, the build.gradle file
defines all the build settings that apply globally to all subprojects. It defines a buildscript
block that includes the JCenter repository. This Internet-accessible Maven repository
contains many Android dependencies and open source projects. The file then sets a
dependency on Gradle 0.12 or greater. Finally, it sets all its child projects to use the same
JCenter repository.

The local.properties file includes only a setting for the location of the Android SDK. Last
we have app\build.gradle. This includes all the build configuration and logic for our app.
The first line engages the Android Gradle plug-in for use in the current build. It then applies
Android-specific configuration inside the android { ... } block. Inside this block, we set
the SDK version and build tools version. The SDK refers to the version of the Android SDK
APls you wish to compile against, whereas the build tools version refers to the version

of the build tools used for things such as Dalvik Executable conversion (the dx step), ZIP
alignment, and so forth. The defaultConfig { ... } block defines the application ID (which
is used when you submit to the Google Play Store), the minimum SDK version that your app
is compatible with, the SDK that you are targeting, the app version, and version name.

The buildTypes { ... } block controls the output of your build. It allows you to override
different configurations that control the build output. Using this block, you can define
specific configurations for release to the Google Play Store.

The dependencies { ... } block defines all the dependencies for the app. The first
dependency line item is a local dependency that uses a special fileTree method call
which includes all the JAR files in the 1ibs subfolder. The second line declares an external
dependency, which will be fetched from a remote repository. A special syntax is used to
declare external dependencies using the string given. This string is broken into sections
separated by colons. The first section is the group ID, which identifies the company or
organization that created the artifact. The second section is the artifact name. The last
section is the specific version of the artifact that your module depends on.

Gradle Weather defines a MainActivity class and three other classes responsible for
modeling and displaying the weather data. Listing 13-6 shows the code for this activity.
These classes include TemperatureAdapter, TemperatureData, and TemperatureItem. In the
initial version of the app, the weather is merely a pretend data set that is hard-coded in the
TemperatureData class.

Listing 13-6. MainActivity.java

public class MainActivity extends ListActivity implements Runnable{

private Handler handler;

private TemperatureAdapter temperatureAdapter;

private TemperatureData temperatureData;

private Dialog splashDialog;

String [] weekdays = { "Sunday","Monday","Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday" };

348

CHAPTER 13: Gradle

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
temperatureAdapter = new TemperatureAdapter(this);
setListAdapter(temperatureAdapter);
showSplashScreen();
handler = new Handler();
AsyncTask.execute(this);

}

private void showSplashScreen() {
splashDialog = new Dialog(this, R.style.splash screen);
splashDialog.setContentView(R.layout.activity splash);
splashDialog.setCancelable(false);
splashDialog.show();

}

private void onDataloaded() {
((TextView) findViewById(R.id.currentDayOfWeek)).setText(
weekdays[Calendar.getInstance().get(Calendar.DAY OF WEEK)-1]);
((TextView) findViewById(R.id.currentTemperature)).setText(
temperatureData.getCurrentConditions().get(TemperatureData.CURRENT));
((TextView) findViewById(R.id.currentDewPoint)).setText(
temperatureData.getCurrentConditions().get(TemperatureData.DEW_POINT));
((TextView) findViewById(R.id.currentHigh)).setText(
temperatureData.getCurrentConditions().get(TemperatureData.HIGH));
((TextView) findViewById(R.id.currentLlow)).setText(
temperatureData.getCurrentConditions().get(TemperatureData.LOW));
if (splashDialog!=null) {
splashDialog.dismiss();
splashDialog = null;

}

@0verride

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

}

@verride

public void run() {
temperatureData = new TemperatureData(this);
temperatureAdapter.setTemperatureData(temperatureData);
// Set Runnable to remove splash screen just in case

CHAPTER 13: Gradle 349

handler.postDelayed(new Runnable() {
@0verride
public void run() {
onDataLoaded();
}

}, 5000);

}

MainActivity.java displays the splash screen temporarily while it pretends to load the
weather data. (This is done to plan for later revisions to the project, which will introduce

an actual load of data.) It then loads the data to the individual views onscreen by using the
TemperatureData class. The TemperatureData class contains a make-believe set of forecast
data, as illustrated in the partial code snippet that follows:

protected List<TemperatureItem> getTemperatureItems() {
List<TemperatureItem>items = new ArraylList<TemperatureItem>();
items.add(new TemperatureItem(drawable(R.drawable.early sunny),
"Today", "Sunny",
"Sunny, with a high near 81. North northwest wind 3 to 8 mph."));
items.add(new TemperatureItem(drawable(R.drawable.night clear),
"Tonight", "Clear",
"Clear, with a low around 59. North wind 5 to 10 mph becoming«~
light northeast in the evening."));
items.add(new TemperatureItem(drawable(R.drawable.sunny icon),
"Wednesday", "Sunny",
"Sunny, with a high near 82. North wind 3 to 8 mph."));
//example truncated for brevity...
return items;

}

public Map<String, String> getCurrentConditions() {
Map<String, String> currentConditions = new HashMap<String, String>();
currentConditions.put(CURRENT,"63");
currentConditions.put(LOW,"59");
currentConditions.put(HICH,"81");
currentConditions.put(DEW_POINT,"56");
return currentConditions;

}

The layout for the main activity includes a ListView that is populated by the
TemperatureAdapter class shown in Listing 13-7. This class accepts a TemperatureData
object, which it uses to pull a list of TemperatureItems. It creates a view for each
TemperatureItem by using the temperature_summary layout shown in Figure 13-2. Each
TemperatureItem, detailed in Listing 13-8, is merely a data holder object with getters for the
important data fields. These summaries are included in the activity’s main layout, which you
can see in Figure 13-3.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

350 CHAPTER 13: Gradle

Listing 13-7. TemperatureAdapter.java

public class TemperatureAdapter extends BaseAdapter {
private final Context context;
List<TemperatureItem>items;

//This example is truncated for brevity...

@0verride
public View getView(int position, View convertView, ViewGroup parent) {
View view = convertView != null ? convertView : createView(parent);
TemperatureItem temperatureltem = items.get(position);
((ImageView) view.findViewById(R.id.imageIcon)).setImageDrawable(temperatureltem.«
getImageDrawable());
((TextView) view.findViewById(R.id.dayTextView)).setText(
temperatureItem.getDay());
((TextView) view.findViewById(R.id.briefForecast)).setText(
temperatureItem.getForecast());
((TextView) view.findViewById(R.id.description)).setText(
temperatureItem.getDescription());
return view;

}

private View createView(ViewGroup parent) {
LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT INFLATER SERVICE);
return inflater.inflate(R.layout.temperature summary, parent, false);

}

public void setTemperatureData(TemperatureData temperatureData) {
items = temperatureData.getTemperatureItems();
notifyDataSetChanged();

rﬁl GradleWeather

Mostly Sunmn
y fog after 2Zam. Otherwise, mostly clear,
with a low around 60. North wind 5 to 9 mph
becoming calm in the evening

Figure 13-2. The temperature_summary layout

CHAPTER 13: Gradle 351

Listing 13-8. Temperatureltem.java

class TemperatureItem {

private final Drawable image;
private final String day;

private final String forecast;
private final String description;

public TemperatureItem(Drawable image, String day, String forecast,+
String description) {
this.image = image;
this.day = day;
this.forecast = forecast;
this.description = description;

}

public String getDay() {
return day;
}

public String getForecast() {
return forecast;
}

public String getDescription() {
return description;
}

public Drawable getImageDrawable() {
return image;
}

352 CHAPTER 13: Gradle

Sunnyvale
92

Dew Point 56

Sunday Today 9264
Wednesday Mostly Sunniy
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind 5 to
mph becoming calm in the evening.
Wednesday Mostly Sunng
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind 5 to
mph becoming calm in the evening.
Wednesday Mostly Sunng
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind 5 to
mph becoming calm in the evening.
Wednesday Mostly Sunny
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind 5t0 9
mph becoming calm in the evening.
Wednesday Mostly Sunny
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind St0 9
mph becoming calm in the evening.
Wednesday Mostly Sunny
Patchy fog after 2am. Otherwise, mostly
clear, with a low around 60. North wind 510 9

mnh haraminn ralm in tha avaninn

Figure 13-3. The activity_main layout

Android Library Dependencies

While a trivial Android app may contain code developed by a single team, over time the
app will eventually mature to include features that are implemented by other developers or
teams. These can be made available externally in Android libraries. An Android library is a
special type of Android project in which you can develop a software component or series of
components that provide some behavior for your app —whether it is something as simple
as multiplying two numbers or as complicated as providing a social network portal that
lists friends and activities. Android libraries externalize features in a way that allows you to
plug and play without much hassle. Gradle’s robust repository system allows you to easily
locate and use code from other companies, open source libraries, or libraries from others
in your own organization. In this section, you will evolve our app by using an Android library
dependency that makes the network request for weather data. This change will not be
adequate for a milestone release, since it will not present the network data in a meaningful
way. However, it will suffice as a demonstration on how to use code from a library project in
an existing Android app. You will make further revisions that will present the data.

CHAPTER 13: Gradle 353

Adding Android libraries follows a flow similar to creating Android apps from scratch. Choose
File » New Module to open the New Module Wizard illustrated in Figure 13-4. Then select
Android Library in the first dialog box. In the second dialog box, enter WeatherRequest

as the module name and choose the minimum SDK settings consistent with your app’s
requirements, as shown in Figure 13-5.

New Module

T

Choose Module Type

Select an option below to create your new module

0 ¢ o &

Phane and Tablet Application Andraid TV Madule Android Wear Madule Glasz Module Goagle Cloud Module

More Modules

Irmport Existing Project

Import JAR or AAR Package

Figure 13-4. Add a library module

354 CHAPTER 13: Gradle

% Create New Module :' '-‘ - . —

: ’: New Module

Android Studio

Configure your new module

Application/Library name: [WeatherRequest

Module name: I WeatherRequest]

Package name: com.apress.gerber.weatherrequest

Minimum SDK API19: Android 4.4 (KitKat) n

Figure 13-5. Set the library module’s name and SDK levels

Choose Add No Activity from the next page of the wizard, shown in Figure 13-6. Click the
Finish button to add the library module to the project.

CHAPTER 13: Gradle 355

Create New Module [

Add an activity to Mobile

CE===n C===n
g
| : L
I | [
Add No Activity I . @

|

N ! l
Wi

Blank Activity Blank Activity with Fragment Fullscreen Activity Google Maps Activity

[erevious | [nea | [cancel |

Figure 13-6. Choose the Add No Activity option

Step2 in the cloned repository has the new module which you can use as a reference. Your
new module will come complete with the following build.gradle file:

apply plugin: 'com.android.library'

android {
compileSdkVersion 20
buildToolsVersion "20.0.0"

defaultConfig {
minSdkVersion 14
targetSdkVersion 14
versionCode 1
versionName "1.0"

}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),«
'proguard-rules.pro’
}
}

}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
}

356 CHAPTER 13: Gradle

The main difference between this build and the main build for the app is use of the Android
library plug-in. This plug-in generates a special Android archive file format, AAR, from the
module source. The AAR format, one of the new enhancements added to Android, allows
code to be shared between projects in the form of libraries. These libraries can be published
to an artifact repository by using the new Gradle build system. You can also declare a
dependency on any project that has a published AAR artifact and use it in your project.

A typical AAR file is merely a ZIP file with the .aar extension. It has the following structure:

/AndroidManifest.xml (required)
/classes.jar (required)

/res/ (required)

/R.txt (required)

/assets/ (optional)

/1ibs/*.jar (optional)
/jni/<abi>/*.so (optional)
/proguard.txt (optional)
/lint.jar (optional)

AndroidManifest.xml describes the contents of the archive, while classes.jar contains the
compiled Java code. Resources are found under the res directory. The R.txt file contains
the text output of the aapt tool.

An Android AAR file allows you to optionally bundle assets, native libraries, and/or JAR
dependencies, which was not possible in earlier versions of the SDK.

In the Step3 branch of the repository in our example, we’ve added a WeatherRequest module to
the project and changed the main app module to include this module as a dependency. This new
module contains a single class, NationallWeatherRequest, which makes a network connection

to the National Weather Service on behalf of the main app. This is a service that returns weather
information for whatever location provided. The location is given as latitude and longitude, and
the response is in XML format. Study the code in Listing 13-9 for a better understanding.

Listing 13-9. NationalWeatherRequest.java

public class NationalWeatherRequest {

public static final String NATIONAL_WEATHER SERVICE =
"http://forecast.weather.gov/MapClick.php?lat=%f&lon=%f&FcstType=dwml";

public NationalWeatherRequest(Location location) {
URL url;
try {
url = new URL(String.format(NATIONAL WEATHER SERVICE,
location.getlatitude(), location.getlongitude()));
} catch (MalformedURLException e) {
throw new IllegalArgumentException(
"Invalid URL for National Weather Service: " +
NATIONAL WEATHER SERVICE);

CHAPTER 13: Gradle

}

InputStream inputStream;
try {
inputStream = url.openStream();
} catch (IOException e) {
log("Exception opening Nat'l weather URL " + e);
e.printStackTrace();
return;
}
log("Dumping weather data...");
BufferedReader weatherReader = new BufferedReader(
new InputStreamReader(inputStream));
try {
for(String eachLine = weatherReader.readline(); eachLine!=null;
eachLine = weatherReader.readlLine()) {
log(eachLine);
}

} catch (IOException e) {
log("Exception reading data from Nat'l weather site
e.printStackTrace();

+e);

}

private int log(String eachLine) {
return Log.d(getClass().getName(), eachLine);
}

}

The new class retrieves the weather data and dumps it to the Android log as a basic
example of using an Android library. To include the new module in our project, the
build.gradle file in the app module must be edited. Find the dependencies block and

change it, as shown here:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:support-v4:20.+'
compile project(':WeatherRequest')

}

The compile project() line introduces a project dependency. The project location is

a relative path given as a parameter to the project() method, and this location uses
colons as a path delimiter. The preceding example is locating a project in a folder named
WeatherRequest within the main project folder GradlelWeather. Gradle treats project

357

dependencies as additional work in the main build. Before building the app module, Gradle
will run against the WeatherRequest dependency project and then look inside this project to
find its output under the build/outputs folder. The WeatherRequest project outputs an AAR
file as its main output, which is consumed by the build in the app module. The AAR ZIP file

is exploded under the build/intermediates folder in the app module, and its contents are
included in its compiled output. You don’t usually have to understand the details of which

project file is included where. Just referencing another module in the dependencies block of

your main module is a high-level way to tell Gradle to include it as part of your app. Make

hese same changes to your local branch and commit them to get.

358 CHAPTER 13: Gradle

Java Library Dependencies

The next revision of our project, covered in Step4, includes a pure Java dependency. This

is a demonstration of the flexibility of both Android and the Gradle build system, as it opens
the door to including lots of preexisting code. Choose File » New Module to open the New
Module Wizard illustrated in Figure 13-7. Then select Java Library in the first dialog box. In
the second dialog box, enter WeatherParse as the library name and click Finish, as shown in
Figure 13-8.

New Module

Andr:

Choose Module Type

Select an option below to create your new module

@O f o O

Phone and Tablet Apphcation Android TV Module Androwd Wear Module Glass Module Google Cloud Module

More Modubes

| Impert easting Echpee ADT or Gradle progect a1 & module

Import JAR or AAR Package
Imports an existing JAR of AAR packs

Figure 13-7. Add a new JAR library

CHAPTER 13: Gradle 359

® Create New Module

Choose options for your new file

Creates a new Java fibrary,

Library name: I WeatherParse

Java package name com.eample

Java class name: lwmﬂ’am
[Create .gitignore file

Java Library

Figure 13-8. Name the new JAR library

As you can see, adding a Java library module is similar to adding an Android module.

The main difference is apparent in the second dialog box, which has fewer options. This is
because a Java module will usually include only compiled Java class files and its output is
a jar file. Compare this to an Android library module that outputs aar files, which can include
layouts, native C/C++ code, assets, layout files, and more.

This begs the question, why would anyone want to use a Java module instead of an
Android library? The advantages are not obvious at first, but with a Java module, you have
the opportunity to reuse your Java code outside the Android platform. This could benefit
you in numerous scenarios. Consider a server-side web solution that defines a complex
image-processing algorithm for matching similar faces. Such an algorithm could be defined
separately as a Gradle project and consumed directly in your Android app to add the same
feature. Java modules can also be integrated with vanilla JUnit test cases. While Android
includes a derivative of the JUnit framework, these test cases must be deployed and
executed on a device or emulator, which quickly becomes a cumbersome process after a
few cycles. Using pure JUnit to test your Java code allows the tests to run directly within the
IDE at the click of a button. These tests usually run an order of magnitude faster than their
Android JUnit equivalents.

Our example project will evolve to include some involved XML parsing logic to make sense
of the XML response from the National Weather Service. Our WeatherParse uses the open
source kXML library to parse the response. This is the same library that is bundled with the
Android runtime. The challenge is to compile our parser outside the Android runtime where
kXML lives. While we can set a dependency for kXML, we also need to distribute and use

This book was purchased by tanakasy@fukuoka-edu.ac.jp

360 CHAPTER 13: Gradle

our Java library on the device without including a redundant copy of the kXML API. We will
address that problem later. For now, let’s look at the build.gradle file for the added Java
dependency:

apply plugin: 'java'

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'kxml:kxml:2.2.2'
testCompile 'junit:junit:4.11'

}

processTestResources << {
ant.copy(todir:sourceSets['test'].output.classesDir) {
fileset(dir:sourceSets['test'].output.resourcesDir)

}
}

There is not much here aside from the declaration of the Java plug-in. The Java plug-in
configures Gradle to produce a JAR file as its output while setting the build steps necessary to
compile, test, and package the class files. The dependencies { ... } block defines a compile-
time dependency for the kXML parser as well as JUnit. Gradle will generate a Java JAR file
including only the compiled classes from the project. The project also includes two Java class
files (one to invoke the parser and one to handle the parser events) as well as a unit-test Java
class. The test feeds a copy of a typical weather XML response from the service into the parser
and verifies that the parser can extract the weather information. The copy of the response is
saved under the resources folder. See the abbreviated unit-test code snippet in Listing 13-10.

Listing 13-10. WeatherParseTest.java

public class WeatherParseTest extends TestCase {
private WeatherParser weather;

private String asString(InputStream inputStream) throws IOException {

BufferedReader reader = new BufferedReader(
new InputStreamReader(inputStream));

StringBuilder builder = new StringBuilder();

for(String eachLine = reader.readlLine(); eachLine != null;
eachLine = reader.readlLine()) {
builder.append(eachLine);

}

return builder.toString();
}

public void setUp() throws IOException, XmlPullParserException {
URL weatherXml = getClass().getResource("/weather.xml");
assertNotNull("Test requires weather.xml as a resource at the CP root.",
weatherXml);
String givenXml = asString(weatherXml.openStream());
this.weather = new WeatherParser();
weather.parse(new StringReader(givenXml.replaceAll("
", "
")));

CHAPTER 13: Gradle 361

public void testCanSeeCurrentTemp() {
assertEquals(weather.getCurrent("apparent"), "63");
assertEquals(weather.getCurrent("minimum"), "59");
assertEquals(weather.getCurrent("maximum"), "81");
assertEquals(weather.getCurrent("dew point"), "56");

}

public void testCanSeeCurrentlLocation() {
assertEquals("Should see the location in XML", weather.getlLocation(),
"Sunnyvale, CA");

}

Any of the unit tests may be run by right-clicking the test method name and clicking the Run
option in the context menu. The feedback is immediate, as the test runs directly in the IDE
without the overhead of starting or selecting a device, uploading APK files, and launching.
When you run a unit test from a Java library in Android Studio, Gradle is invoked under

the covers and copies the resources from the resources folder into the output folder to be
located by the test. The setUp method in the test case leverages the copied weather.xml
file and reads it in as a string using a custom asString method. (In an added wrinkle, the
XML includes HTML <bxr> tags that need to be properly terminated by using Java’s

String replaceAll() method to prevent XML parse exceptions.) The setUp() method
continues to create a WeatherParser object while asking it to parse the XML. Two of the test
methods included in the preceding code demonstrate how the weather parser can then be
used to find the current temperature and current location from the response.

With a working weather-parsing Java library, you are free to change our Weather Request
Android library to make use of it. To do that, you need to do two things. First, you ensure
that the Java library is included in the top-level settings.gradle file under the GradleWeather
project root directory. Next, you set a dependency in the WeatherRequest gradle build to pull
in the WeatherParse project output. Again, the WeatherParse project is a Java library that
outputs a single JAR file, but there is a subtle detail to look out for. Our Java library includes
a dependency on kXML, which is considered transitive. We could declare the dependency in
the WeatherRequest module as follows:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile project(':WeatherParse')

}

However, this will lead to the following compiler error:

Output:
UNEXPECTED TOP-LEVEL EXCEPTION:
com.android.dex.DexException: «
Multiple dex files define Lorg/xmlpull/v1/XmlPullParser;

TOP-LEVEL EXCEPTION, a common cause of frustration for many developers, means that more
than one of the same file is being included in your APK. In this case, the exception comes
from Android already including the Xm1PullParser defined in the kXML API as part of the
SDK. The Android SDK makes these and other APIs available during the compiling of any

362 CHAPTER 13: Gradle

Android application or library project. The reason we do not get errors when we build the
WeatherParse module is that it is defined as a Java library. Java library projects are compiled
with the Java SDK, and no Android APIs are included as part of the compile. To work around
the error, we need to exclude this transitive dependency from the list of dependencies
considered in the WeatherRequest module. We add the code shown in Figure 13-9 to the
Gradle build file for the WeatherRequest module to get rid of the error.

Ignore whitespace: | Do not ignore ~ | Highlight: | By word » | | o 7 D %
21 minutes ago - build.gradle (Read-only) Current
apply plugin: 'com.android.library 1 1 apply plugin: 'com.android.library’
android | % configuraticns [
4 compile.exclude module: 'kxml’

R R
D w0 o6 - o [oh e R

com. Apress.gerber.weather. request”

BuildTypes |
release |
runfroguard false
proguardFiles getDefaultProguardFile(proquard-android.

buildlypes {

relesse |
19 19 runProguard false
20 20 proguardfiles gecDefaultProguardfile ('proguard-andr
1 a1 }
dependencies | Fr 22 }
compile fileTree(dir: 'libs', include: [°+.jar']) 23 23 }
compile project(’:WeatherParse') 2
25 25 dependencies {
26 26 = 1 *. jar'])

Figure 13-9. Exclude the kXML dependency

The project is now updated to parse the XML weather response and download the images
by using links from the XML. The NationalWeatherRequest object caches the URL object
as a member variable and adds a getWeatherXml method to use the URL, as shown in
Listing 13-11.

Listing 13-11. NationalWeatherRequest.java

public class NationalWeatherRequest {

public static final String NATIONAL_WEATHER_SERVICE =
"http://forecast.weather.gov/MapClick.php?lat=%f&lon=%f&FcstType=dwml";
private final URL url;

//...

public String getWeatherXml() {
InputStream inputStream = getInputStream(url);
return readWeatherXml(inputStream);

}

private String readWeatherXml(InputStream inputStream) {
StringBuilder builder = new StringBuilder();
if (inputStream!=null) {

CHAPTER 13: Gradle 363

BufferedReader weatherReader = new BufferedReader(
new InputStreamReader(inputStream));
try {
for(String eachLine = weatherReader.readline(); eachLine!=null;
eachLine = weatherReader.readlLine()) {
builder.append(eachLine);
}
} catch (IOException e) {
log("Exception reading data from Nat'l weather site
e.printStackTrace();

+e);

}

}
String weatherXml = builder.toString();

log("Weather data " + weatherXml);
return weatherXml;

}

private InputStream getInputStream(URL url) {

InputStream inputStream = null;

try {
inputStream = url.openStream();

} catch (IOException e) {
log("Exception opening Nat'l weather URL " + e);
e.printStackTrace();

}

return inputStream;

}

Listing 13-12 details how the NationalWeatherRequestData object is updated to use the new
getWeatherXML method and give its results to the new WeatherParse Java component.

Listing 13-12. NationalWeatherRequestData.java

public NationalWeatherRequestData(Context context) {
this.context = context;
Location location = getlocation(context);
weatherParser = new WeatherParser();
String weatherXml = new NationalWeatherRequest(location).getWeatherXml();
//National weather service returns XML data with embedded HTML
 tags
//These will choke the XML parser as they don't have closing syntax.
String validXml = asValidXml(weatherXml);
try {
weatherParser.parse(new StringReader(validXml));
} catch (XmlPullParserException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}

}

public String asValidXml(String weatherXml) {
return weatherXml.replaceAll("
","<bxr/>");
}

364 CHAPTER 13: Gradle

@0verride
public List<TemperatureItem> getTemperatureItems() {
ArraylList<TemperatureItem> temperatureltems =
new ArraylList<TemperatureItems();
List<Map<String, String>> forecast = weatherParser.getlastForecast();
if (forecast!=null) {
for(Map<String,String> eachEntry : forecast) {
temperatureItems.add(new TemperatureItem(
context.getResources().getDrawable(R.drawable.progress),
eachEntry.get("iconLink"),
eachEntry.get("day"),
eachEntry.get("shortDescription"),
eachEntry.get("description")
));
}
}

return temperatureltems;

}

The TemperatureAdapter class undergoes a major overhaul and becomes rather
complicated. It uses image links from WeatherRequest to download the images in the
background. See the definition in Listing 13-13.

Listing 13-13. TemperatureAdapter.java

public class TemperatureAdapter extends BaseAdapter {
private final Context context;
List<TemperatureItem>items;

public TemperatureAdapter(Context context) {
this.context = context;
this.items = new Arraylist<TemperatureItem>();

}

@0verride

public int getCount() {
return items.size();

}

@0verride

public Object getItem(int position) {
return items.get(position);

}

@0verride

public long getItemId(int position) {
return position;

}

@verride
public View getView(int position, View convertView, ViewGroup parent) {
View view = convertView != null ? convertView : createView(parent);

CHAPTER 13: Gradle 365

TemperatureItem temperatureltem = items.get(position);
ImageView imageView = (ImageView) view.findViewById(R.id.imageIcon);
imageView.setImageDrawable(temperatureItem.getImageDrawable());
if(temperatureItem.getIconLink()!=null){
Animation animation = AnimationUtils.loadAnimation(
context, R.anim.progress animation);
animation.setInterpolator(new LinearInterpolator());
imageView.startAnimation(animation);
((ViewHolder) view.getTag()).setIconLink(temperatureItem.getIconLink());
}
((TextView) view.findViewById(R.id.dayTextView)).setText(
temperatureItem.getDay());
((TextView) view.findViewById(R.id.briefForecast)).setText(
temperatureItem.getForecast());
((TextView) view.findViewById(R.id.description)).setText(
temperatureItem.getDescription());
return view;

}

class ViewHolder {
private final View view;
private String iconlink;
private AsyncTask<String, Integer, Bitmap> asyncTask;

public ViewHolder(View view) {
this.view = view;
}

public void setIconLink(String iconLink) {
if(this.iconLink != null && this.iconlLink.equals(iconLink)) return;
else this.iconLink = iconlLink;

if(asyncTask != null) {
asyncTask.cancel(true);
}

asyncTask = new AsyncTask<String,Integer,Bitmap>() {
@0verride
protected Bitmap doInBackground(String... url) {
InputStream imageStream;
try {
imageStream = new URL(url[0]).openStream();
} catch (IOException e) {
e.printStackTrace();
return null;

}

return BitmapFactory.decodeStream(imageStream);
}
@verride

protected void onPostExecute(final Bitmap bitmap) {
if (bitmap == null) {
return;
}

366 CHAPTER 13: Gradle

new Handler(context.getMainLooper()).post(new Runnable() {
@0verride
public void run() {
ImageView imageView = (ImageView) view
.findViewById(R.id.imageIcon);
imageView.clearAnimation();
imageView.setImageBitmap(bitmap);

}
1

asyncTask = null;

}
};
asyncTask.execute(iconlLink);
}
}
private View createView(ViewGroup parent) {
LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT INFLATER SERVICE);
View inflatedView = inflater.inflate(R.layout.temperature summary,
parent, false);
inflatedView.setTag(new ViewHolder(inflatedView));
return inflatedView;

}

public void setTemperatureData(TemperatureData temperatureData) {
items = temperatureData.getTemperatureItems();
notifyDataSetChanged();

}

The ImageViews are each associated with a ViewHolder and initialized with a spinner icon and
a rotating animation that simulates an indefinite progress spinner. The majority of the work

is in the ViewHolder’s setIconLink method. This method triggers a download of the weather
icon in the background. When the download completes, the ImageView is updated with the
downloaded image. And the spinning animation is cancelled. Again, a lot of complexity is in
this class file just to handle the loading of the images. Wouldn't it be better to simplify?

Third-Party Libraries

Sometimes you don’t have the availability or expertise to implement a tricky piece of

logic. Third-party libraries are often used to tackle these and other tough problems in
Android development. As mentioned earlier, calling code that has been developed by
another developer or team somewhere else on the globe is nearly identical to calling code
from another module in your project. We continue with the Step5 branch where we will
demonstrate how to use an open source component to the Gradle Weather project. Our app
downloads a series of images, each representing the conditions on a certain day. We start
with a minimalistic addition to the Gradle build under the app module shown in Figure 13-10.

CHAPTER 13: Gradle 367

Your version

CRLF

1 gapply plugin: 'com.android.application’' [
2

3 android {

4 compileSdkVersion 20

5 buildToclsVersion '20.0.0'

6

7 defaultConfig {

8 applicationld "com.apress.gerber.gradleweather”

9 minSdkVersion 14

10 targetSdkVersion 20

11 versionCode 1

12 versionName "1.0"

13 }

14 buildIypes |

15 release {

16 minifyEnabled false

17 proguardFiles getDefaultProguardFile ('proguard-android.txt'), 'proguard-rule:
18 }

190 |)

20

21

22 dependencies {

23 compile fileTree(dir: 'libs', include: ['*.jar'])

24 compile 'com.android.support:support-v4:20.+'

25 compile project(':WeatherRequest')

26 X compile 'com.nostralld.universalimageloader:universal-image-loader:1.9.2'

211 |
28

Figure 13-10. Add the universal image loader

That’s it! Immediately you will see a yellow prompt indicating that the Gradle file has
changed and a hyperlink text button that enables the project sync to begin. Click the link
illustrated in Figure 13-11 to allow Android Studio to sync the underlying IntelliJ project files
with the dependencies. Gradle will download them in the background.

S app x

Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly.

apply plugin: 'com.android.application'

Handroid {
compileSdkVersion 20
buildIcolsVersion "20.0.0"

Figure 13-11. Gradle files need to be synced

After the project sync and download completes, the code can be changed to invoke the API.
Revisiting TemperatureAdapter from earlier, we can appreciate how easy it is to download
the weather icons in the background:

private final Imageloader imageloader;
List<TemperatureItem>items;

368 CHAPTER 13: Gradle

public TemperatureAdapter(Context context, Imageloader imageloader) {
this.context = context;
this.imagelLoader = imageloader;
this.items = new Arraylist<TemperatureItem>();

public void setIconLink(String iconLink) {
final ImageView imageView = (ImageView) view.findViewById(
R.id.imageIcon);
imageloader.displayImage(iconLink, imageView,
new SimpleImagelLoadinglistener(){
@0verride
public void onLoadingComplete(String imageUri, View view,
Bitmap loadedImage) {
imageView.clearAnimation();
super.onLoadingComplete(imageUri, view, loadedImage);
}
1;
}

The constructor is updated to take an ImagelLoader object and store it in an instance variable.
The setIconLink method merely gives the iconlLink to the ImagelLoader, which does all the
heavy lifting.

Opening Older Projects

Android Studio now includes robust import tools for migrating older projects into the newer
Gradle build system. This support is near transparent and happens automatically as you
open older projects. In Android Studio’s earlier beta days, many people got annoyed when
opening these older projects. Part of the frustration has been with the rapid update cycle

of Gradle, which can result in older builds sometimes failing to work. This happens when
you use a newer version of Gradle with an older build. Using the Gradle wrapper when

you import older projects is supposed to alleviate that pain somewhat, but at times this is
not feasible or effective. When you open an older project in an updated version of Android
Studio—for example, moving from version 0.8x to 1.x—you may have seen the unsupported
Android Gradle plug-in error shown in Figure 13-12.

Messages Gradle Sync
X

li] Failed to sync Gradle project 'Simplelayouts’
The project is using an unsupported version of the Android Gradle plug-in (0.12.2). The recommended version is 1.0.0.

e Lol
it |

© Error: Eix plugin version and re-import project
.-
I %
?
SHTODO § £ Android [Terminal 0: Messages

Figure 13-12. Unsupported version error

CHAPTER 13: Gradle 369

You can click the Fix Plug-in Version and Re-import Project link, but you will be greeted with
the error in Figure 13-13, which is complaining about a missing DSL method, runProGuard().
Armed with your new knowledge of Gradle, you can surmise what a DSL method is, and you

now know to open your app’s build.gradle file to find this errant method call. Version 1.x
deprecated this call in favor of minifyEnabled.

| Messages_Gladle Sync
¥ (® C\androidBook\SimpleLayouts\app\build.gradle

X z

- Gradle DSL method not found: "runProguard()’

= Possible causes:
+ @ OE 6.0 @ The project 'SimpleLayouts’ may be using a version of Gradle that does not contain the method.
I rror:(16, 0) Open Gradle wrapper file

@ The build file may be missing a Gradle plugin.

— The buid fil b Gradle plu
? Apply Gradle plugin
“®T0DO @ 6: Android [E Terminal 2 0: Messages

Figure 13-13. DSL method not found error

Summary

You have explored the basics of the Gradle build system. We demonstrated a multimodule
Android project with different types of dependencies. You also saw how to incorporate regular
Java code with JUnit tests in an Android project. Finally, you learned how to open older
projects by using the import capabilities built into Android Studio. You walked through how to
fix some common problems with these older project imports. Gradle also includes a robust
dependency management system that allows you to reuse code between projects with little
effort. This chapter only scratches the surface of what is now possible in Android Studio with
Gradle. Feel free to explore on your own and enhance the example project further.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

Chapter

More SDK Tools

Android Studio is a special build of IntelliJ IDEA packed with tools geared toward Android
development. This chapter explores the various tools you have at your disposal. Many of
these are baked into the various tool windows, and others are a mere keystroke away.

Android Device Monitor

Android Device Monitor (ADM) is one of the most powerful tools in the SDK. It allows you to
monitor your device from multiple perspectives and examine such things as memory, CPU,
network utilization, and more. To get started with the ADM, choose Tools » Android »
Android Device Monitor from the Android Studio menu. The window that opens has a
Devices view on the left.

In this view, you should see all the devices connected to your development computer, along
with a list of processes running on each. Launch your app if it is not running and then find it
in the list of processes. The name should follow the usual package-naming conventions. You
can resize the individual columns in the Devices view if you have trouble reading the process
names. Click your app to select it, and it will become the focus of the various tools in ADM.
In these examples, you will analyze the Gradle Weather app. Figure 14-1 illustrates the ADM
window with the Gradle Weather app selected.

3n

372 CHAPTER 14: More SDK Tools

18 Andeoid Device Monitor e)
Fle Edit Fun Windew Help
DoMs] B E -0 v
B Devices 52 =] (=N £ L 31| (@ Heap| @ Moo, | P Net [File.. | @Em_ Dsu. = O
om0 2o a@mry ~
Mame Thread updates not ensbled for selected client
{ toolbar button & bde)
a [§ motorols-a1028- TARESOSIFS Online 444 Lo " o enal
comapress gerber gradiewesther 13135 500,/ 830
W Logia =n
Saved Fiters = B | Ssch for messages. Accepts v regeues. Préfis with pid, apg, tag: 0 best to kit scope. [verbose =] W B [EITT)
Al e L
amage (e Best) L. Time BD TID Apphcation -

D 1134 2., 10M U
0 11-34 M1%ad... 10M 1122

1Mstai |l

Figure 14-1. The Android Device Monitor screen

Thread Monitor

With your app selected, you can begin exploring various characteristics of its execution by
clicking to enable features in ADM. Thread activity is one of easier things to monitor. Click
the Update Threads button to fill the right-hand view with a list of active threads along with
IDs, statuses, and names. Clicking any thread in the right view will reveal more detail on its
activity when you performed the update. The additional detail will appear as a stack trace in
the pane below the Thread tab. Click the thread nhamed main, for example. You will probably
see a stack trace similar to the following:

at android.os.MessageQueue.nativePollOnce(Native Method)

at android.os.MessageQueue.next(MessageQueue.java:138)

at android.os.Looper.loop(Looper.java:123)

at android.app.ActivityThread.main(ActivityThread.java:5086)

at java.lang.reflect.Method.invokeNative(Native Method)

at java.lang.reflect.Method.invoke(Method.java:515)

at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:785)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:601)

at dalvik.system.NativeStart.main(Native Method)

The main thread typically iterates the android.os.MessageQueue, looking for user interaction.
As gestures are performed on-screen, keys are typed, or other interactions occur, the

system records the activity as messages and fills the MessageQueue. The system calls
nativePollOnce() to retrieve these messages before delivering them to your app as events.
The call is invoked from the MessageQueue.next () method, which is invoked by the main loop,

CHAPTER 14: More SDK Tools 373

which is invoked by the ActivityThread.main() method. Looking further down the stack,
you can see that the main thread is started by Zygote.Init(), which is among the first
processes to launch when you power-on your device. You can click the Refresh button
above the stack trace to update it.

Explore the stack traces of other threads in your app to get an idea of what they are doing.
In Figure 14-2, we explore one of the many Universal Image Loader threads from the Gradle
Weather project while updating the stack trace. The stack trace reveals the work involved in
reading an image from a network stream and decoding it as a bitmap.

1%, Threa.. 32 | § Heap| Alloca....|? Netw... |1 FileE... | @ Emul.. | Syste.. | = O

D Tid Status utime stime Name -
3 32270 VmWait 0 0 Signal Catcher
*4 32211 Runnable 40 129 JDwp T
*5 32272 VmWait 24 16 Compiler
& 32273 Wait 1 0 ReferenceQueueDaemon
T 32274 Wait 8 1 FinalizerDaemon
*8 32215 Wait 0 0 FinalizerWatchdogDaemon
9 32277 Native 0 0 Binder_l =
10 32278 Native 0 0 Binder2 1
11 32289 Wait 13 4 AsyncTask #1
13 32294 Native 0 0 Binder_3
16 32323 Wait 43 9 uil-pool-1-thread-1
17 32324 Wait 66 13 uil-pool-1-thread-2
18 32325 Wait 74 13 uil-pool-1-thread-3 =
Tue Nov 2514:59:02 PST 2014

at java.io.InputStream.read(InputStream.java:162) =

at java.io.BufferedInputStream.fillbuf(BufferedInputStream java:142)

at java.io.BufferedinputStream.read(BufferedInputStream.java:288)

at com.nostral3.universalimageloader.core.assist.ContentLengthlnputStream.read(ContentL...
at android.graphics.BitmapFactory.nativeDecodeStream(Native Method)

at android.graphics.BitmapFactory.decodeStreaminternal(BitmapFactory java:620)

at android.graphics.BitmapFactory.decodeStream(BitmapFactory.java:596)

m

at com.nostral3.universalimageloader.core.decode.BaselmageDecoder.definelmageSizeAnd...
at com.nostral3.universalimageloader.core.decode.BaselmageDecoder.decode(BaselmageDe...
at com.nostral3.universalimageloader.core.LoadAndDisplaylmageTask.decodelmage(LoadA...
at com.nostral3.uni limageloader.core.LoadAndDisplaylmageTask.tryl oadBitmap(Load...
at com.nostral3.universalimageloader.core.LoadAndDisplaylmageTask.run(LoadAndDisplayl...

Figure 14-2. The thread monitor

Heap Monitor

The heap monitor lets you examine the objects allocated on the heap while your app runs.
Click the Heap tab, next to the Threads tab on the right side of your ADM window, to bring
the heap monitor to the foreground. Keeping your app selected in the Devices pane, click
the Update Heap button to enable heap updates, shown in Figure 14-3. Heap updates
happen every time the garbage collector runs on the device; with each execution, fresh data
describing the heap is sent to the ADM user interface. Interaction with your app under a

374 CHAPTER 14: More SDK Tools

casual use-case may eventually trigger an execution of the garbage collector. You can also
coerce an execution at any time by clicking the Garbage Collect icon, which looks like a
trash can.

) Andecid Devie Moritor b |
Fle Edt Fun Window Help

Quick Acoeia T BEH-3-wQ-
B Deviees 12 [=] = 0 |[% Thee. | @ Heap 12| @ Alloc..| % Netw..| i File .. | @ Emu.| O st | = O

s E2 e s a@ry -
Mame Heap updites will happen after every GC for this chent
a |§ motorols-ait Online 444 n

Heap Sre Alleated Free %lked & Objects
comapres 3261 % @ 8600/870

| 6TSME SHOME ESSME SN a7 |CametC)

Display: [Stmts =
Type Count Total Size Smallest Largest
free 21 5 ME 18 456 548 KB
data abject B 110ME 168 10M0K8
1006 M8 we M
6479 MB N8 1075Me

L7} BOSAIRE B TRIBKE

1 fle 1|/NGKB Fo1] 16023 K8
B-byte amay longlL doublel] 16 1670KB uD e0EKE
nonJuwa cbject % asm 188 e

Allocation count per size

W Logia

Saved Fiters o= cntor

Friages. Accepts Lava pogeues. Prefi with pick, apgr, tage or beat: bo b scope.

All e (e filters)
e L. Time PO TID Applcation Tag Tet

D 11-25 1S:49:2... 1072 U i
D 11-28 1%:48:2... 1072 1132 WifiStateM... handleMesssge: X

1oMetsz |l

Figure 14-3. The heap monitor

The Heap tab is filled with details identifying the types and counts of individual objects on
the heap as well as the smallest and largest sizes of each type. Selecting an individual type
allows you to drill into an allocation count for that particular type. In our example, we drill
into the 11,212 2-byte array objects that occupy the largest total space on the heap. The
chart below the heap detail shows that there are over 2,500 2-byte arrays that are exactly
32 bytes long. These arrays are likely the allocations used for the icons, as 32 bytes is an
optimal size for managing image data.

Allocation Tracker

The allocation tracker can also be used to track where memory is being used in your app.
You access the allocations tracker via the Allocation Tracker tab, which is next to the Heap
tab and has two buttons: Start Tracking and Get Allocations. Click the Start Tracking button
to begin tracking allocations. Click the Get Allocations button to load the captured data in
the user allocations view. The start button turns into a stop button while the tracker runs.
You can click Stop Tracking at any time to terminate the tracker.

Upon capture, the view will display the order, size, class, thread ID, and the class and
method for each allocation. The list is initially sorted by size in descending order, but you
can click any of the column headers to change the sort order. Repeat clicking of a column

CHAPTER 14: More SDK Tools 375

header toggles the sort order between ascending and descending. Clicking any entry in
the view will load a stack trace where the allocation occurred. Again, this example uses
the Gradle Weather app, and you can scroll through the list. The app will load icons for the
different days while tracking allocations. Figure 14-4 illustrates the results.

Quick Access

5 @ 680 -t A
% Threads | [§ Heap | B Allocation Tracker 52 | % Network Statistics | i1 File Explorerl @ Emulator Cantrol| [System [nforrnation| = 0

Get Allocations . Filter: [[Inc. trace
Alloc Order w Allocation Size Allocated Class Threadld Allocated in Allocated in . =
| 30727 32784 byte[] 16 java.io.BufferedinputStream <init> | E
28663 32784 byte[] 16 java.io.BufferedinputStream <init>
27964 32784 byte[) 18 java.io.BufferedinputStream <init>
27320 32784 byte[] 17 java.io.BufferedinputStream <init>
26127 32784 byte[] 17 java.io.BufferedinputStream <init>
26084 32784 byte[] 18 java.io.BufferedinputStream <init>
25200 32784 byte[] 18 java.io.BufferedinputStream <init>
24206 32784 byte[] 17 java.io.BufferedinputStream <init>
23524 32784 bytef] 18 java.io.BufferedinputStream <init>

23380 32784 bytell 17 java.io.BufferedinputStream <init> x
at java.io.BufferedInputStream. <init> (BufferedInputStream.java:96)

at com.nostral3.universalimageloader.core.download BaselmageDownloader.getStreamFro...

at com.nestral3.universalimageloader.core.download.BaselmageDownloader.getStream(Bas...

at com.nostral3.universalimageloader.core.decode.BaselmageDecoder.getimageStream(Bas...
at com.nostral3.universalimageloader.core.decode.BaselmageDecoder.decode(BaselmageDe...
at com.nostral3.universalimageloader.core.LoadAndDisplaylmageTask.decodelmage(LoadA...
at com.nostral3.universali loader.core.LoadAndDisplaylmageTask.tryloadBitmap(Load...
at com.nestral3.universalimageloader.core.LoadAndDisplaylmageTask.run(LoadAndDisplayl...
at java.util.concurrent. ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1112)

at java.util.concurrent. ThreadPoolExecutorSWorker.run(ThreadPoolExecutor.java:S87)

at java.lang. Thread.run(Thread java:841)

Figure 14-4. The allocations tracker results from Gradle Weather

You can see several allocations of 32KB byte arrays as part of the downloading of icon
data from the network. If your app were experiencing low-memory issues, this could be a
possible target for optimization. It is important to understand that you should not optimize
code unless you are experiencing low memory. Optimizing code prematurely leads to
unnecessary complexity and can work against your goals in performance optimization.

Network Statistics

The Network Statistics tab has the ability to monitor network traffic. This tool is just as easy
to use as the others. Figure 14-5 depicts the tab just prior to starting a network statistics
capture. Click the Start button on the Network Statistics tab to begin capturing network
traffic. The Start button becomes a Stop button, which can be clicked to stop capture.

376 CHAPTER 14: More SDK Tools

) Andeid Debug Mesitor — - o).
Bl Edit Window Heip
68 5 [ET00E) @ ey i
W Devices 2 = O || %, Threads | @ Heap | @ Abocation Tracker | Network Statistcs £ Fie Explorer| @) Emulator Control| [System Infoemation =0
AR A I Speeet Medium (250ms) '|@.“““,
Name
@ Ta86505IF5 Orline a4
14
com.apres 32261 8600 35,540

[MRS

FEo i SN SRR SLEN bl
» X bytes: RX packets TX bytes Thpackets ||
| B L0738 L] 52878 557

WD Loglat 1T =

Prefin with pic, app, tags or est: o linit scope. [verbose =] H B @[T

Saved Filters

Al meessages (0o filters)

saMotzv | |l

Figure 14-5. Tracking network statistics

The view will display a chart graphing the incoming and outgoing traffic as the app runs. The
RX section at the top of the chart represents response data, while the TX section represents
transferred data. In our sample, we’ve captured 1MB of response data that occurred while
scrolling the list view in the Gradle Weather app to download image data. The device has
sent a total of 52KB worth of request data.

Hierarchy Viewer

Often you may have trouble getting a layout to render correctly. You may have logic in your
activity that conditionally positions views or sets visibility based on user interaction. When
things get complicated, it helps to be able to dump the view hierarchy in ADM. A view
hierarchy dump is a screenshot that you can explore interactively. Clicking elements in the
screenshot reveals a breakdown in the pane to the right of the screenshot. The breakdown
is given in a tree structure, with nodes representing ViewGroup objects. This is displayed in
Figure 14-6 in a hierarchy dump of the Gradle Weather app. You can explore these nodes
to see their individual layout properties. You can also drill into any node to explore its child
objects.

CHAPTER 14: More SDK Tools 377

@ Android Debug Mosilorin S o
Ble Edt Window Help
g 1 (BRI DOMS | @ Hierarchy View
" = — =n
8 Do 11| " @y :
slemols2oue 20 2
4 (1) FrameLayout (17500157186
") ImageView [25,66)129.130]]
Hame # 1) LinearLayout [37,73][352,122] | *
B TASGS0SIFS Oiine a4 (O Sunnyvale, CA) TetViemGeadieWeather 1730337121 ||
com.apres 32261 8500 5700 - 69 o Q) Unearlayoud ORSOITIOLE) °®
|) bnageButten (More opticas) [608,50]720, s
L DewPointad | 4 (L) FrameLayout [0,146)0720,1184] =
Tutsdiy Today T243 & (0 RelativeLayout |0, 1460720, 1184]
This Aftemoon Sunny) ImageView [3L1TBIIL65.257)
Sunny, with a high near 72. Caim wind. # [} Linearl oyt (1651731638, 345]
Tonight Mastly Clear) TextVieweSuneryvale, CA [356,178]{567. 237
Mostly clear, with & low arourd 43. West () TetViews£9 [401, 23711451, 266]
nerthwest wind around 5 mph becoming 4 (2 LinearLayout [320,296)(532,345)
calm after midnight -
Wedresday Surny
n Sunery, with a high near 75, Light and Nesda Dutald
variable wind, index 1
Wednesday Might Mostly Clear tet
Mostly clear, with a low around 44. Calm resource-id comapress. gesber. gradheme athes el ocaybes |
wind. class android widget Linesrlayout
E Thankigiving Day Mostly Suny package comapress. gerber. gradieaesthes |
Mostly sunny, with a high near 1. Calm |
=N vind content-desc |
Thursday Night Mostly Clear ABAA iy
Mostly clear, with a low around 44 checked false
Friday Messly Surny i]
Mostly sunny, with a high near 65 enabled true
E Frida Ninkt Mnsthy Gl focusable faise
focused false

M Loglat 1

Saved Fillers o | Tciaech for mveages. Accpts Meva regexis. Prifi with ik, apgs, tags o bkt v scapa

Al messages (no filters)
L. Time PID T Apphcation Tag Tat

D 11-28 21:88:2... 1072 12 WifiStateM... handleMessage: X

Figure 14-6. Exploring the Gradle Weather Ul by using a hierarchy ump

veboze ~| H B [EE)

MM I

Clicking individual nodes in the right pane will locate the corresponding view object in the
screenshot while drawing a red rectangle highlight around it. The properties of any selected
node show in the pane beneath the tree view pane. These properties indicate whether

the view is visible, focused, clickable, selected, and more. You can also examine the view
bounds, resource ID, and the content description. If you encounter a view that should be
visible but isn’t, you can select the containing ViewGroup layout and drill in to find the view.

A common misunderstanding with views is the difference between the View.INVISIBLE and
View.GONE constant property values. A view that is marked as View.GONE will not appear in
the hierarchy. A view marked View.INVISIBLE will appear in the hierarchy but will not be
drawn to the screen. Another common problem is understanding how using the
wrap_content property on a ViewGroup layout or container reserves space for views even
when they are invisible. If the view is marked View.GONE, the container will not reserve space

and will shrink in size to hold any remaining content.

Note The Android Device Monitor is based on Eclipse tools, giving you the ability to adjust the
user interface by switching perspectives. If you are not familiar with Eclipse, understand that a
perspective represents a particular workflow and that tabs and views are positioned in a way
optimal for that workflow. Eclipse tools usually have several perspectives preconfigured while
allowing you to create your own. Since many of the tools in the ADM are being embedded in the
Android Studio IDE, this section covers only a subset of tools that are exclusive to ADM.

378 CHAPTER 14: More SDK Tools

Click Window » Open Perspective to see the available workflows for the monitor, as shown
in Figure 14-7.

-
& Open Perspective C=mAC

@ Hierarchy View

@ Pixel Perfect
@Resource

C Tracer for OpenGL ES

Figure 14-7. Switching the perspective in ADM

Click the Hierarchy View option to open the Hierarchy view perspective. The Hierarchy Viewer

is different from the hierarchy dump tool in that it works only with the emulator or rooted
devices. To use the Hierarchy Viewer, start the emulator and launch your app in the emulator.
Click the Refresh button and then find your emulator in the list of devices in the Windows
tab. Your screen should resemble Figure 14-8. Find the process representing your app in the
device list and then click the Load button to load the view hierarchy with the current screen
from your app. The hierarchy view gives a large and in-depth tree view of the layout currently
rendered onscreen.

CHAPTER 14: More SDK Tools 379

© Andeoid Device Monitor i sy S v |)
File Edit Bun Window Help

5 | @ ooms [heacy Vo] B 8 41 - 0 - Q-

sf @ T 7 O] Tree Overview &2

Quick Access
B Windows | 5] View Properties 11 = [| |5 Teee View 12 FLIEL J-E X

Property Value
Accessibility

TextView
SE1eETde0
LT

Euenty
Foous
4 Layout
getBaneine] -1
getrnghan 17
getLayoutDinection) RESOLVED DIRECTION_LTR
getfawlayeutDirectio INHESTT
getiidth)) 1080
hasTrangien tState) false
isLayouthil) false
layean_betteentargin 0
layout_endMargin 21413648
layout_height MATCH_PARENT
layout JefiMargin 0
layout_miMarginFlags 26
layeut_mibaiginFlags, Ond
layout_miMarginFlags, (8

=t Layout View 11 | [Console =

layout_mMarginFlags, (hid
layout_rightMargin 0
loyoud_startharge -Z14743548
leyeut topMurgen 0
layout_width MATCH_PARENT
mBattom 155
mChidCountWithTras 0
mleft 0
rftight 1080
mTop]

Meazurement

Mimcellanecus

Padding

Sereling

Teat

Flter by class or id:

BET

Figure 14-8. Exploring the Gradle Weather Ul using the Hierarchy viewer

The View Properties tab on the left side of the ADM window contains a comprehensive list of
properties, while the pane in the center displays a zoomed-in view of the hierarchy. You can
find the Layout View tab in the lower-right side of the window, which shows a wireframe-like
summary of the current screen. Clicking elements in any of these tabs selects the equivalent
element in the other tabs, as they all remain synced.

Android Monitor Integration

Android Studio bundles some of the more common tools from the ADM in the Android
DDMS view at the bottom of the IDE. These tools allow you to generate system information
dumps, perform garbage collection, terminate the app, analyze the heap, and perform
method tracing. As your app increases in complexity, these tools can prove to be an
invaluable addition to your arsenal. Within the Android DDMS view, select your app in the list
of processes. The process list can be found under the Devices » Logcat tab in the Android
view. Click this tab to bring it into focus if it is not already to the front. After selecting the
process running your app, the additional tool buttons will be enabled.

Memory Monitor

The memory monitor displays a graphical chart of the memory consumed by the currently
debugged app. It can be used to easily identify general memory trends. Click the Memory
Monitor button in the lower-right corner of the screen, next to the Event Log and Gradle
Console buttons. It will open the Monitor tool window. Experiment with your app and watch

380 CHAPTER 14: More SDK Tools

the graph as the monitor runs. In Figure 14-9, we run the Gradle Weather app while scrolling
through the forecast list to see the memory impact. You can also use the Initiate GC button

to trigger garbage collection at any point in time and see how much memory is reclaimed. If

memory used in the graph does not return to a reasonable level after initiating the garbage

collector, your app may be |

eaking memory.

- - - fappl - Androad Studio 101 . n Ll
Fie EdR View Navigate Code Anshge Befactor Buikd Rgn Took VCS Window Help el
buﬂ«&.:gn‘!&"l@:l#m'bﬁ’.l.ub—':l'*ﬂil.ﬁi‘r? as
& ' Caapp) 3 wc) [main) [java) B3 com) [apress) B gerber) 1 |
Frogent - 01- [|—|aw.mmmx| P
v 3 GradieWeather racieie B | punlic class extesds L Ruessble| i~
> O ides «3
» B .navigation private Hasdler handler: 1
t 5
1l o g* ::::t.: TemperatureData tesperaturelatar
g > t‘b‘"d private Dlalog splashDialog: m
Bl » Digude Steing [] weekdays = | i
; » 3 WeatherParse =Sumday®, "Honday ", *Tueaday™, ;
[l WeatherRequest “Weddnasday *, *Thursday®, *Friday®, X
B gaignore ! “saturday” ?
o '
Fw::“km private Imageloader imageloader:]l
4 gradie.prop: [
[gradiew S— g
[gradiewbat /81 O protected void caCreate (Bundle savedinstacceState) [=
Bl GracieWeatherimi | super.cocreate (savednstancestate) ;
Rk bocaLpeo | setContencVien (R layout. astivity saisi:
| §~ &, Memory Mendor M- L

bos B G

B | Devces logaat | ADB logs +*

Build Variants

3 I Faverites

B g 21000 [IIUGARNGIEN [Terminat U version Cortrel

[Initistes garbage colection on selected VM

@ BN e

=
2 &

i logeat

11525-11531 feem. i
1 11535-11886 om0
11525-11887/c0m. 1
11525-11888//com. ¢
11525-11886/com. ¢
11525-11887feem. ¢
11525-11886/ 0021 ||
115a5-11888/c0m. 0

03-28 1
od-28 1
02-28 1
02-28 1
02-28 1
02-28 1
Gd-28
0i-28 1
02-28
02-28 1.
03-28 1
03-28 1
0i-28 1
02-28 1
02-28 13133150.37%

11525- 14548/ com. 0
11525-11287/oom. ¢
1 11525-11887 om0
11525-11888 cem. 1
11525-11825/c0m 0
11525-11887/com. 0
11525-11825 /com. ¢
11525-11887/com. ¢

B 3 cranges B g Messages

84 Memon Moritor | evertlog [E Gradie console
171 CRIF ¢ UTFA & Git 419528

4 1002 uB

8 Motorola XTL028 Ao 4,44 (47119) [{) comapress gerber geadieweather (1525) [

= 't

9

Figure 14-9. Memory consumption of Gradle Weather while scrolling the list

Method Trace Tool

The Method Trace tool can help you find methods that take a large number of CPU cycles
to execute. CPU cycles are a precious resource, and a method should treat them as such.
Application slowdown occurs when one or more methods get too comfortable working the
CPU. If your app suffers slowdown or if you just want to better understand how the CPU is
being utilized during a typical use case, you can use the Method Trace tool to record activity
as you use the app under any given scenario.

The Method Trace tool is simple to use. Prime your app or get it into the state that you wish

to examine. After selecting your app from the process list, click the Start Method Tracing
icon to begin the trace. Use your app to exercise whichever methods you are interested
in and then click the button again to complete the method trace. In Figure 14-10, we've
captured the activity from Gradle Weather while scrolling through the list.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 14: More SDK Tools 381

= < andeck CAUserC Andeoid Studio (Beta] DAL . [
Ede [t View Mavigate Code Anshge Befactor Buikd Rgn Took VCS Window Help
OO +#4 00 AR ¢ HiRaer] KR TTLES 8 TLES|? Q

E3€) 53 sers) 3 Chiton | £ AppData) £ Local | £ Temp | B ddem255731835137627M4 trace
4| [ddma20055THAISIIT62T 4 trace

Thessd] u-peci-2-thieed-1 ﬂ wmiz | Wl Clock Tme Bl (] Color by inchusive time & Q

aapunae gy

1
:
:

structure B 1 Proy

4:

i
{
Hill

pein G5

Invocatson Count. [Exchusive Time {us)

Build Variants
3
R

'¥ Thread ui-poal-1-thread-1
hread-1.

Task.trca
Taskdecod

1
7
LoadAndDisplaylmage mage 3
E BaselmageDecoder decode 3 0%
= BrselmageDecoder getmageiiresm [} 154 on
o BaselmageDownioader.getSiream 3 M 00
BanslmageDoanicader,qetiireamF rombetwork 5 B2 _oo% |
W5Detug L1000 & GAndrod B Temind W 3 Charges Wy Eventlog [Gradie Console
[E Dumg Java Heap: Hesp dump saved as: Ci\android-heap.hprof (today 135 PM) o | /s [Gnddiss® e @

Figure 14-10. The Method Trace tool

In this example, we ran the Gradle Weather app and scrolled the list of weather entries while
recording. When you initially complete the method trace, the view will default to the main
thread. Each method call is represented in a visualization that draws bars for the call. These
bars are colored based on their exclusive time, which is the time spent only in that method
and excluding the time spent in the method it calls. The Thread drop-down can be used to
switch views of other threads so you can see the activity they encounter. This figure explores
the image loading and decoding that happens in a background thread (not the main thread).
While doing a lot of work on the main thread is a common cause for a sluggish Ul, you can
never rule out work done on other threads. Many problems can surface just by noticing how
many additional threads are running and what work they are performing.

The trace view can be zoomed in and out by using the scroll wheel on your mouse. Zooming
occurs around the point where your mouse cursor is located onscreen. It takes a while to get
used to exploring the trace view, as you may be used to typical left/right scrolling behavior,
which is absent from the viewer. To find details on one of the bitmap-loading method calls,
you would find it in the viewer and point to it with your mouse. Then you scroll down to
zoom in for as much visual detail as you need. As you zoom, the viewer includes more detail,
and lower method calls in the stack are exposed and labeled. Later, to see method calls

that happened prior, you would scroll the mouse wheel up to zoom out and see more of the
trace. You would then point to the earlier method call and repeat the process.

A table beneath the visual viewer presents a breakdown of all the method calls. This
breakdown includes name, invocation count, and inclusive and exclusive times. All of these
timings are relative to the time spent recording the trace. If you spend 4 seconds recording

382 CHAPTER 14: More SDK Tools

a trace, a 50% reading would equate to 2 seconds. You can mouse over any method
call in the viewer and wait 2 seconds for a tool tip to appear and give the exact time in
milliseconds.

Allocation Tracker

The allocation tracker is now built into Android Studio. It works similarly to its ADM
equivalent. Click the memory tracker in the left toolbar under the Android DDMS tool window
to begin tracking allocations. Interact with the app as it runs and then click the button again
to stop tracking allocations. A new tab opens in your editor that displays the results of the
trace. This is shown in Figure 14-11.

- - [. - Chlbers\Cid = w Seadi 101 - =i -
Eile [dt View Nevigate Code Anshyge Eefactor Build Run Tooks WCi Window Help |
DD +#» XD QA ¢ |Efw-p &R FTLED 8 FLES 7 [« |
B10:) B3 tsers) £ Citan) £ Applata) B3 Local) £5 Tem) B odmad4G6R1 620267220 e) |
¢ [Ny B o < | i®
5 o
£ g
Al A [[lwnddence H
L
} Allogation Crder Allgcated Clas. Allgcation Sae Theead Id Adlccation e §
o 48015 bytel]] 4 dabesystemn. NatrveStart run(Hative Maethod)
g 48014 java lang Integer 12 4 java.lang Integer.vaboe Ol Inkeger java70) m
8 £H013 ceg.apache harmony. dabik.ddmc. Chunk F 4 heh dabvikddrmc. DdrmiServer. AN z
- 5002 byte] Ft] 4 andeoid) i
¥ 48011 ceg.apache haemeny. dahik ddrme Chunk] 4 andecid.ddm. 3
48010 bytel] = 4 dabisystem. NativeStart runiHative Miethod) £
45008 java lang Integer 12 4 javalang Integer vabueCA Integer javal0E) #
€
H
| Ancroia poss B L
B | s logaat | ADBIogs | BE logleet [Devg B @)| ap comapress.gerber gradieweatter [
- — — -
o Devices | |1 logeat -
a [B Motorola XTI028 Androsd &.4.4 (AP115) n 4 (02-am 1 11525-11831/com, apresa. gerber. gradleweather D/daivikm: Debugger has detached: cbject registry had 1 entriea
o} = 02-28 14 11525-11887/com. apress. gerber.gradleveather Dydalvibvm: GC_FOR_ALLOC freed Z108K, 42W free 1000TH/1T184K, paused 17x
com apress. gerber gradieweather (11325) * o '.1 11525-11531 feom, apreas. gerber. gradleveather I/dalvikve! Enabling alloc tracker (E5536 entries, 16 frases =-3 S17504(
L] 8 ° 25T 11525-11EB6/com. apreas. gester. GC_FOR_ALLOC freed Z261K, 44% free 977TK/1TIE4K, paused 2im
1 o [11525-11887, sbe GC_FOR_ALLOC freed 1E43K, 434 free DMMOK/LTIEMK, paused 2im
217 [11525-11886. be GC_TOR_ALLOC freed 2074K, 43% free 9838K/17184K, paused 1fm
Start Allo<ation Tracking - WL 11525-11888 /com, apress. gerber. gradlevesther Dfdalviim: GC_FOR_ALLOC freed 1835, 42% free 10051K/17184K, paused 1%
5 [1152511531 /eom. apress. gerber.gradleveather I/dalvikvml class 248/773463, meched IS3/725454, file 158/728454
] 8, 11525-11531 /com, apreas. gerber 1rdal Gemerated AT, size is €235782/6270180
+ G & 11525-12531 apceas. geste GC_FOR_ALLOC freed 1011K, 43% free DELCK/LTLIEME, paused 13
02-28 14:17:02.844 11525-118531, be 1 k p* Grow heap (freg case) to 17.454M8 for €2701%6-byte allc
*
P grn Brcoo [B Termingl O Version Cortred W 3: Cumpes [@ Wessages M MemoryMontor W1 Eventlog [¥) Gradie Console
[I Dumg Jwa Heap: Heap i [minutes ago] n + | GAdSSE :|w @

Figure 14-11. The built-in allocation tracker

Screen Capture

The Android DDMS window contains a couple of options that allow you to capture the
screen of your application while you use it. The Screen Capture button instantly captures the
current screen of your device and loads the image in a preview dialog box, where you can
opt to save it to disk. Figure 14-12 illustrates the dialog box. The screenshot dialog box also
allows you to frame the image by using a phone or tablet design for the frame. There are
zoom controls for zooming in and out of the screen. You can enable a drop shadow, screen
glare, and even rotate the image prior to saving. Clicking the Reload button refreshes the
dialog box with an image of the current screen rendering.

CHAPTER 14: More SDK Tools

re B E———_)

=)

| @e 2aaa
| .

j————
| | DReiosd | | P Rotate | [Frame Screenshot Geneic Phone [Emeph%jkrm(‘n\m

545,450 PNG (32-bit color) 194 83Kb |

Sunnyvale, CA
58
Dew Point 46

©

Saturday Today 6341
tenth of an inch, except higher amounts
possible in thunderstorms.

Tonight Chance Showers
A chance of showers and thunderstorms
before 10pm, then a slight chance of
showers. Some of the storms could produce
small hail. Mostly cloudy, with a low around
8 41. North northwest wind around 5 mph
becoming calm in the evening. Chance of
precipitation is 40%. New rainfall amounts
of less than a tenth of an inch, except higher
amounts possible in thunderstorms.

Sunday Sunmy
Sunny, with a high near 66. Morthwest wind

B 3107 mph

Sunday Night
A 10 percent chance of showers after 4am
Partly cloudy, with a low around 41
Northwest wind 5 to 7 mph becoming calm
n the evening.
Monday

A 90 mareant shones of shauare mainh

Slight Che Showers

Chance Showers

Figure 14-12. Using the Screen Capture tool

The Screen Record button allows you to record a video of the screen as you interact

with your app. When you click this button, you get a dialog box, shown in Figure 14-13,

prompting you to select the recording bit rate and resolution. Click the Start Recording

button to begin recording and use your app. When you are finished, click Stop Recording

383

to generate a video file with the recorded interaction. Another dialog box will prompt you to

save the recording. Use any file name and save it to a location where you can easily find it

on your system. Windows users may need to install alternate codecs or software, as the file
is saved in the MP4 format. Figure 14-14 demonstrates the playback of interaction with the

Gradle Weather app using the popular VLC player on Windows.

-
® Screen Recorder Options

=)

nmcor [

Screen Recorder can record the device's display for a maximum of 3 minutes.
By default, it records at the device's native resolution or at 720p at a 4 Mbps bitrate.
You can customize these options below. Leave empty to use defaults.

Resolution (width x height, in px): | | |

Cancel

=

Figure 14-13. Starting the Screen Recorder tool

384 CHAPTER 14: More SDK Tools

2 device-recording mpd - VIC medip playte “— O ———————— — - — - b ST
Media Playback Audio Yedeo Jooks View Help

IR me e

-
® ! Gradle her

Sunnyvale, CA

58
Dew Point 46

Saturday Today 6341
A 10 percent chance of showers after 4am.
Partly cloudy, with a low around 41.

= Northwest wind 5 to 7 mph becoming calm

in the evening
Monday Chance Showers
A 30 percent chance of showers, mainly
after 10am. Partly sunny, with a high near |
65. Light and variable wind becoming west |

=% gouthwest 5 to 8 mph in the morning. New |

precipitation amounts of less than a tenth of
an inch possible. |
Monday Night Slight Che Shower
A 20 percent chance of showers. Mostly
cloudy, with a low arcund 40. New

=% precipitation amounts of less than a tenth of

an inch possible.

Tuesday Mostly Sunny
L,q Mostly sunny, with a high near 67,
s Tigesday Night Mostly Cloudy

JEVICESIE XS [N

«** Wednesday Mosty Sunny

L ——————————

(TR DI CORC-IMRAICYES) o

Figure 14-14. Playback of a screen recording

Navigation Editor

The Navigation Editor is a brand-new feature in Android Studio. While it is functional at the
time of this writing, it is still heavily under development. This editor allows you to quickly
prototype the high-level flow of your app while navigating in and out of edit mode for specific
activities and fragments. If you have ever had a rough idea of an app and wanted to envision
how a user would move between screens, the Navigation Editor is the ideal tool. It can also
discover the existing flow and connections between screens in an existing app. Over time, it
will be exciting to see the tool mature.

The best way to familiarize yourself with it is with a brand-new project. Imagine you want to
design a new Shopping app that allows users to quickly register via their preferred social
network credentials and casually browse a list of items. After finding an item, users could tap
it to get more details before deciding to buy. To design such a flow, you could use napkin
sketches, whiteboards, or other tools that offer limited, if any, integration with your IDE.

The process of taking your rough idea into a functional app can be an arduous process,
and external tools add extra wrinkles in managing multiple designer programs as you work.
It is common for people to use wireframing or diagramming tools such as OmniGraffle,
Lucidchart, and so forth while working with an IDE. The process of moving between these
programs to implement a working app is not always straightforward. The Navigation Editor
gives you a means to prototype and sketch a flow just as easily from within your IDE. In this
section, you will explore our Shopping app by using this tool.

CHAPTER 14: More SDK Tools 385

Designing a User Interface

Using the New Project Wizard and the Blank Activity template, create a project named
Navigate. After the project loads, you should start in design mode to edit the activity main
xml layout. Remove the Hello World label and drag out a Large Text Label with three buttons
below it. Change the label’s text to Mini-Shopper and change the text on the buttons to
reflect three fictitious social network services. The example in Figure 14-15 uses FaceBox,
Twiggler, and G++, but feel free to be as creative as you wish.

[L- BeHewss- [Cj- @appTheme ™ Mainacivity- @- 21~ aees Belacoc BuadRimn VG Mindow Help
HEE 18 2| |4 [Tek&Cotss YR Ew|?
malﬂ EIIIWIIE Save File &5 Template...
Hivity_mainaml % Gcn«m.lwaho(-.
Save Project as Template...
Q- Bress- - @a Manage Project Templates.. W21+
= @ E- XML Actians 3

§ 5ymc Project with Gradie Files

| i Android Device Monitor

|
Mini-Shopper
]

' Enable ADE Integration

Figure 14-15. Designing the FaceBox Ul

First Steps with the Navigation Editor

Next, from the main menu click Tools Android » Navigation Editor. Your screen will resemble
Figure 14-16.

386 CHAPTER 14: More SDK Tools

=g

1 Navigate - [CAandroidBook\Navigate] - [Navigate] - .\navigation\app\raw\main.nvg.xmi - Android Studio
File Edit View Novigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO &2 |XHH QAR ¢ H(Baer) > & ¥R E

E main.nvgxml %

1: Project

«] 7: Structure

4% Build Variants 3 2: Favorites

B Terminal §:Android [/ 0: Messages 2 TODO

[Gradle build finished in 7 sec (32 minutes ago)
Figure 14-16. Opening the Navigation Editor
Android Studio will create a main.nvg.xml file and present it in the Navigation editor. It will

show your activity and its associated Android context menu visually. (The Blank Activity
template automatically creates this context menu.) This editor allows you to rapidly create

CHAPTER 14: More SDK Tools 387

new activities and associate these activities with controls on existing activities to create
transitions. It also allows you to make connections to items within Android system context
menus. You can click and drag items, such as the context menus, around in the editor.

Right-click anywhere within the editor to open an editor context menu with a single New
Activity option, shown in Figure 14-17. Click this option to open the New Activity Wizard.
Choose the Blank Activity template and name the new Activity FaceBoxLoginActivity. You
will return to the navigation view, which now displays both activities.

Figure 14-17. Create a new activity with the Navigation Editor

Connecting Activities

Reposition the new activity so it is adjacent to the original. You will need to make a
connection between them. Feel free to reposition context menus as you work in the
editor. Hold the Shift key while clicking the FaceBox button and dragging over to the new
FaceBoxLoginActivity. The editor will draw a connecting line between them, with a pink
dot representing a transition positioned in the middle of the line. Click this dot to see

the definition of the transition. The transition connects the Source MainActivity to the
Destination FaceBoxLoginActivity by a press gesture, as shown in Figure 14-18.

388 CHAPTER 14: More SDK Tools

Run Took ¥C3 Window Help
[appe > % L ¥ & FRE& 7

|

Transition -;

Source: MainActiity @

Gesture: f

________ Destination: FacaBostogindstivey -
i

H

2

I ferminal o gAndroid M g Menages R 1000 ™ eventlog [Grale Console M MemoryManfor
[Gradie busld finished in 7 sec (35 minutes sgo) IBEEDEE B

Figure 14-18. Connecting activities with the Navigation Editor

Now open the MainActivity.java source file. You should see a click listener attached to the
button that starts the FaceBoxLoginActivity:

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
findViewById(R.id.button).setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
MainActivity.this.startActivity(new Intent(MainActivity.this,
FaceBoxLoginActivity.class));
}
1;
}

This code was generated by the simple act of a click and drag from the editor. Return to the
Navigation Editor and double-click FaceBoxLoginActivity. You will be set to the graphical
editing view for this activity, where you can drag and drop to decorate it with more controls
and options. Create a minimalistic login screen with two TextView labels, two EditText input
fields for a username and password, and finally a Login button. Figure 14-19 illustrates the
pretend FaceBox login screen.

CHAPTER 14: More SDK Tools 389

&v ﬁ MNexus 4~ a- @AppThtm: - FaceBoxLogin~ e - Component Tree
|ﬁ|z1' v @ Device Screen
B8 Ba QaB ¢ & ¥ HRdvelnon

@;‘ textView2 - “Login with FaceBox"
@ textView3 - "User Name:"

@' textViewd - "Password:’

[T] editText2

2% buttond - “Login”

Login with FaceBox

Properties

layout:height
style
accessibilityLiveRegion

alpha

Figure 14-19. Designing the FaceBox login screen

Editing Menus

Return to the Navigation Editor, which will now reflect the changes in the FaceBoxLogin
layout. You can run the app to test both the transition and the new FaceBoxLogin layout
changes. In the Navigation Editor, double-click the context menu associated with the login
activity. The menu_facebox_login.xml file will be opened with an immediate preview window
to the right. Change the single item in the menu, giving it an ID of @+id/action_back and a
title of @string/action_back. Press Alt+Enter to bring up the Intention dialog box, prompting
an action to create the new string value resource, shown in Figure 14-20. Press Enter to take
this action.

390 CHAPTER 14: More SDK Tools

@(nenu xmlns:android="http://schemas.android.com/apk/res/android" |
xmlns:tools="http://schemas.android.com/tools"
9 tools:context="com.apress.gerber.navigate.FaceBoxLoginActivity">

- <item android:id="@+id/action back" android:title="@string/action back"

< - PR 5 Aroid:showAsAction="never" />
i} " Create string value resource 'action_back' »

S Inject Language/Reference 4

> (]

=P Override Resource in Other Configuration... »

Figure 14-20. Editing the FaceBox menu

Type back as the value for the new string in the resource dialog box and press Enter to
continue. Return to the Navigation Editor. Now you will make a connection from the new
menu item to MainActivity. Hold Shift while clicking and dragging from the Back menu item
to MainActivity, as before. The editor will generate code in MainActivity as you make the
new connection. Open the MainActivity. java file to see the following generated code:

@0verride
public boolean onPrepareOptionsMenu(Menu menu) {
boolean result = super.onPrepareOptionsMenu(menu);
menu.findItem(R.id.action back).setOnMenuItemClickListener(new
MenuItem.OnMenuItemClickListener() {
@verride
public boolean onMenuItemClick(MenuItem menuItem) {
FaceBoxLoginActivity.this.startActivity(new Intent(FaceBoxLoginActivity.this,
MainActivity.class));
return true;

}
b

return result;

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 14: More SDK Tools 391

Build and run the app as you make these connections to test how the transitions work. At
this point, you should be able to transition from the main activity to the FaceBoxLogin activity
and then back to the main activity by using the new context menu item.

Now that you have some familiarity with the basic usage of the Navigation Editor, try to
create two more activities for the app, one for presenting a list of items and one for seeing
the item detail.

Terminal

Probably the most practical plug-in you will ever need in your toolbox is Terminal. Click the
terminal tab at the bottom of the IDE to open up a terminal window where you can enter
operating system commands. You can click the green plus button to start new sessions in
separate tabs. The command window can help you accomplish tasks when you cannot find
or remember the IDE equivalent. Perhaps the most important tool in the terminal that you

will need to understand is ADB, the Android Debug Bridge. This tool gives you direct control
over an attached device or emulator. The command takes the form adb {device-options}
sub-command {sub-command-options}. The device options are as follows: -d to target the only
attached device, -e to target the only attached emulator, or -s devicelID to target a specific
device with the given ID.

Open your terminal to explore the commands described in the rest of this section.

Query for Devices

adb devices

The devices subcommand lists the names and device IDs of each attached device.
Emulators will be listed with a device ID in the form emulator-<port>.

Install APK

adb install /path/to/app.apk

The install command will push an Android APK to the device and install it. Simply provide
the path to the APK file on your development machine.

392 CHAPTER 14: More SDK Tools

Download File
adb pull /path/to/device/file.ext /path/to/local/destination/

The pull command downloads an arbitrary file from the device to your development
machine.

Upload File
adb push /path/to/local/file.ext /path/to/device/destination/

The push command uploads an arbitrary file from your development machine to the device.

Port Forward

adb forward local-port remote-port

The forward command will redirect network connections on your development machine to
the device. This is a technique used in advanced scenarios such as debugging code running
in the Chrome web browser or connecting to a network server running on the device.

Google Cloud Tools

Earlier you explored an Android app that uses a service over the network to gather the
weather forecast. In this section, you will explore how to develop and deploy your own back
end by using Google Cloud tools. First you will design the front end, which will communicate
with an arbitrary bean to build a greeting. Later you will build out the back end and run it
locally. Finally, you will publish to Google’s Cloud services and test the project end to end. To
begin, you need to sign into Google with your Google account, as shown in Figure 14-21.

CHAPTER 14: More SDK Tools

Google

One account. All of Google.

Sign in to continue to Google Developers

Email
Password
[] Stay signed in Need help?

Creale an account

One Google Account for everything Google

BEM&ED 2>E

Create your Google Account

One account is all you need Name
A single username and password gets you into everything Google.

Choose your username

BEMED 2> H

| prefer to use my current email address
Create a password
Take it all with you
Confirm your password
Switch between devices, and pick up wherever you left off.
Birthday
Month

a»

Gender

lam... -

Mobile phone
- -

Your current email address

Default homepage

Figure 14-21. Sign into Google

393

394 CHAPTER 14: More SDK Tools

Creating the HelloCloud Front End

Create a new Android project using the Blank Activity template and call it HelloCloud. Name the
blank activity MainActivity and click Finish to begin your project. Use the code in Listing 14-1 for
your MainActivity and the XML in Listing 14-2 for your activity main.xml layout.

Listing 14-1. The MainActivity for the HelloCloud Front End

public class MainActivity extends Activity {
private SimpleCloudBean cloudBean;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setCloudBean(new SimpleCloudBean());
setContentView(R.layout.activity main);

}

public void onGoClick(View sender) {
final TextView txtResponse = (TextView) findViewById(R.id.txtResponse);
txtResponse.setText(getCloudBean().getResponse());
txtResponse.setVisibility(View.VISIBLE);

}

public SimpleCloudBean getCloudBean() {
return cloudBean;
}

public void setCloudBean(SimpleCloudBean cloudBean) {
this.cloudBean = cloudBean;
}

public class SimpleCloudBean {
public CharSequence getResponse() {

return "This response is from " + getClass().getSimpleName();
}

Listing 14-2. The activity_main.xml for the HelloCloud Front End

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingleft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"
tools:context=".MainActivity">

CHAPTER 14

<TextView

android:
android:
android:
android:

<Button

android:
android:
android:
android:
android:
android:
android:
android:
android:
android:

<TextView

android:
android:
android:
android:
android:

android

text="@string/greeting_text"
layout_width="wrap_content"
layout_height="wrap_content"
id="@+id/txtGreeting" />

layout_width="wrap_content"”
layout_height="wrap_content"
text="go!"

id="@+id/button"
layout_below="@+id/txtGreeting"
layout_alignParentRight="true"
layout_alignParentEnd="true"
layout_marginRight="42dp"
layout_marginTop="72dp"
onClick="onGoClick" />

layout_width="wrap_content"”
layout_height="wrap_content"
textAppearance="?android:attr/textAppearancelarge"”
text="Response Shows Here"

id="@+id/txtResponse"

:layout_below="@+id/txtGreeting"
android:
android:
android:
android:

layout_alignParentlLeft="true"
layout_alignParentStart="true"
layout_marginTop="34dp"
visibility="invisible" />

</Relativelayout>

: More SDK Tools

395

This code invokes a simple local bean that returns a response to the activity. The response is
updated in a hidden TextView component, which is then set to View.Visible.

Creating the Java Endpoints Back-End Module

You can now add a new back-end module to your project. This back-end module will

contain the code that runs on the web server. Click File » New Module and select Google

Cloud Module, as shown in Figure 14-22.

396 CHAPTER 14: More SDK Tools

H Android Studio

Choose Module Type

Phone and Tablet Application

More Modules

New Module

Select an option below to create your new module

Android TV Module Andreid Wear Module

IO

Glazs Module Goegle Cloud Module

Android Library
Creates a new Android module

Import Existing Project
Import existing Eclipse ADT or Gradle project as a module
Import JAR or AAR Package

Imports an existing JAR or AAR package as a new project module

Java Library

| Crestes s new Java library.

Figure 14-22. Create an App Engine module

Name your module backend and leave the other options at their default settings, as shown
in Figure 14-23. Click Finish, and Android Studio will generate a basic Java servlet project
with a Google Cloud endpoint ready to use. Gradle will start syncing your project with the

new module.

CHAPTER 14: More SDK Tools 397

r
Create New Module

.

'. New Google Cloud Module

Android Studio

Configure your new Google Cloud module

Module type: Ia\\pp Engine Java Endpoints Module

Module name: | backend

Package name: | com.example.Clifton.myapplication.backend

Client module: | app (com.apress.gerber.hellocloud)

Check the "A ngine Java Endpeints Module” documentation for mo
instructions about connecting your Android app to this backend.

L — =

Figure 14-23. Select App Engine Java Endpoints Module

Once the sync completes, right-click the back-end module in the project window and
choose the Make Module back-end option. Next, find the back-end option in your run
configuration list and click the Run button to launch it. Android Studio will wrap the servlet
code in an instance of the Jetty web servlet engine running locally for you to explore. The
console gives a hint on how to interact with the endpoint by using your web browser. Launch
your browser and point it to http://localhost:8080/ to see the endpoint in action. You will
see the page illustrated in Figure 14-24.

398 CHAPTER 14: More SDK Tools

- e — -— ==
()] @ rawsnocaness e 2 - & | @ Helo, Endporist <] 1 - -y i

Hello, Endpoints!

Enter your name and press the button below to call your Google Cloud Endpoints API.

If you need step-by-step instructions for connecting your Android application to this backend module, see
"App Engine Java Endpoints Module" template documentation.

For more information about Google App Engine for Java, check out the App Engine documentation.
To leam more about Google Cloud Endpoints, see Cloud Endpeints documentation.
If you'd like to access your generated Google Cloud Endpoints APIs directly, see the Cloud Endpoints AP| Explorer.

Figure 14-24. Running your Google Cloud Endpoint

Connecting the Pieces

After verifying that the endpoint is operating, you can have Android Studio generate
and install client libraries that you can use in your Android app. Find the build for the
back-end module in the Gradle build tool window on the right-hand side and run the
appengineEndpointsInstallClientlLibs task. This is shown in Figure 14-25.

CHAPTER 14: More SDK Tools 399

) HelloCloud - [C:\androidBook\HelloCloud] - [backend] - .\backend\build gradle - Android Studio 104
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

OHO ¢« X0l QK & 2 ¥ [HelloCloudbackend [appengineEndpointsinstaliCiientlibs) v | P ¥
['3 HelloCloud) ["3 backend) (& build.gradle)

. R -9 - - -
4| _© MainActivityjava X | (2 backend x | [activity mainami x |
2 @x‘/ If you would like more information on the gradle-appsngine-plugin please refer to the github page
i @// https://github.com/GoogleCloudPlatform/gradle-appengins-plugin
e |
Dbuildscript {
5] repositories {
= mavenCentral ()
Bloo
"v"') dependencies |
classpath 'com.google.appengine:gradle-appengine-plugin:1.9.14'
(&) }
&)
érepoai:ories {
mavenCentral():
a3
apply plugin: 'java'
| apply plugin: 'war'
apply plugin: 'appengine'
gsourceCcmpatibility = JavaVersion.VERSION 1 7
?Eargethwatibiliw = JavaVersion.VERSION 1 7
Gdepeudenciea {
appengineSdk 'com.google.appengine:appengine-java-sdk:1.9.14'
compile 'com.google. ine: ine-endpoints:1.9.14'
: compile 'com.google.appengine:appengine-endpoints-deps:1.9.14'
compile 'javax.servlet:servlet-api:2.5'
&}
I fod
g |Run (& HelloCloud:backend [appengineEndpoi lientLibs]
= BUILD SUCCESSEUL
E |
% B | J Total time: 15.11 secs
; = §$ Received result DaemonCommandResult[type=Success, value=org.gradle.tooling.internal.provider.Bu
=
ol @ [} BUILD SUCCESSFUL
“
£)
2 X Total time: 19.741 secs
= 2 m 9:21:12 PM: External task execution finished 'appengineEndpointsInstallClientlibs'.
cd| f
*®

:_QTODO W 6: Android [E Terminal [E] 0: Messag

Gradle build finished with 1 warnings(s) in 20 sec (12 minutes ago)

Figure 14-25. Install the client libs for your endpoint

Earlier versions of Android Studio had an option baked into the menu that was recently
removed from version 1.0.1. In version 0.8.x, you could click Tools » Google Cloud Tools »
Install Client Libraries. Figure 14-26 illustrates the earlier menu.

400 CHAPTER 14: More SDK Tools

i VCS Window Help
; Tasks & Contexts "¢ w 2

! Generate JavaDoc... er> o request> B3 mymodul

Save Project as Template... T
' . Ipoint,java X

Manage Project Templates...
.weather.request.mymodul

@ Groovy Console...

'pl Android
Google Cloud Tools Q Install Client Libraries
B8 Open Terminal... Q Generate Endpoint

R T e wpagoxp veswdUll — VI , LHawcopalc =
F: St = SRy E:

Figure 14-26. Earlier versions of Android Studio had the task baked into the menu

Android Studio triggers a special Gradle build that will do the work of generating an
installable client library that acts as a proxy between the Android client and the back-end
web server. After the Gradle build completes, you can find the client library as a ZIP file
under the client-1ibs folder inside the back-end module’s build folder. The ZIP file contains
a readme. html file with all of the instructions on how to use it. Look for the compile-time
dependencies, which need to be copied into the module that uses the endpoint. You can
ignore the extra instructions explaining how to install the client library, as the IDE performs
this step as part of the generation.

Your dependencies block should look like the following after adding the compile-time
dependencies in your app module’s build.gradle file:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile ([group: 'com.apress.gerber.cloud.backend', name: 'myApi',
version: 'v1-1.19.0-SNAPSHOT'])
compile([group: 'com.google.api-client', name: 'google-api-client-android’,
version: '1.19.0'])
/7 compile project(path: ':backend', <- remove this line
// configuration: 'android-endpoints') <- remove this line

}

The commented-out dependency in our example was added automatically when we add a
new module to the project. It should be removed, as you don’t want the app linked directly
to the servlet code; rather it uses the client library to proxy requests. You also must make
sure you have added the local Maven repository to your project. Open the top-level
build.gradle file and add it to the allprojects section:

allprojects {
repositories {
jcenter()
mavenLocal()

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 14: More SDK Tools 401

After adding the dependency and the mavenLocal repository, you should sync your project
with the Gradle build to make the API available. Add a new class in your app module to
make use of it. Call this class RemoteCloudBeanAsyncTask and make it extend AsyncTask.
Declare a static variable of type MyApi. You should be prompted to import the class, which
should now be available in the classpath. If you don’t have the option of importing it, double-
check your dependencies and rebuild the module to be sure you have correctly included the
generated client libraries. Listing 14-3 defines this new class.

Listing 14-3. The RemoteCloudBeanAsyncTask Class Definition

class RemoteCloudBeanAsyncTask extends AsyncTask<String, Void, String> {
public static final String RESULT = "result";
private static MyApi apiService = null;
private final Handler handler;

public RemoteCloudBeanAsyncTask(Handler handler) {
this.handler = handler;
}

@0verride
protected String doInBackground(String... params) {
String name = params[0];
try {
return getMyApi().sayHi(name).execute().getData();
} catch (IOException e) {
return e.getMessage();
}

}

private MyApi getMyApi() {
//lazily initialize the API service
if(apiService == null) {
MyApi.Builder builder = new MyApi.Builder(AndroidHttp.newCompatibleTransport(),
new AndroidJsonFactory(), null)
// The special 10.0.2.2 IP points to the local machine's IP address
// in the emulator
.setRootUrl("http://10.0.2.2:8080/_ah/api/")
.setGoogleClientRequestInitializer(new
GoogleClientRequestInitializer() {
@0verride
public void initialize(AbstractGoogleClientRequest<?>
abstractGoogleClientRequest) throws IOException {
abstractGoogleClientRequest.setDisableGZipContent(true);

}
1

apiService = builder.build();

}

return apiService;

402 CHAPTER 14: More SDK Tools

@0verride

protected void onPostExecute(String result) {
final Message message = new Message();
final Bundle data = new Bundle();
data.putString(RESULT, result);
message.setData(data);
handler.sendMessage(message);

}

It is important to remember to use an AsyncTask, because initializing the service and making
the network call can take some time. This object is instantiated with an Android handler,
which is used later in the logic. We retrieve a reference to the API in the doInBackground
method. The method that returns the reference creates and initializes it lazily. After obtaining
the API reference, the call to the web endpoint is made, and the result of the call is returned.
A message is then sent to the handler in the onPostExecute method.

Plug this AsyncTask into MainActivity by modifying the onGoClick method:

public void onGoClick(View sender) {
final RemoteCloudBeanAsyncTask remoteCloudBeanAsyncTask =
new RemoteCloudBeanAsyncTask(new Handler() {
@verride
public void handleMessage(Message msg) {
super.handleMessage(msg);
final String result = msg.getData().getString(RemoteCloudBeanAsyncTask.RESULT);
final TextView txtResponse = (TextView) findViewById(R.id.txtResponse);
txtResponse.setText(result);
txtResponse.setVisibility(View.VISIBLE);
}
D;

remoteCloudBeanAsyncTask.execute("Developers");

}

Here we create the RemoteCloudBeanAsyncTask and give it a handler that passes messages
to the hidden text view and makes it visible. With the back-end server still running on your
development machine, build and run this example on the emulator. Click the Go button
and you should see the return message from your Google Cloud endpoint, as shown in
Figure 14-27. If you get a message indicating a time-out, double-check that your server is
still running and is accessible by using your web browser. Make sure you have declared
Internet permissions in your manifest. You may also need to change or disable any
aggressive firewall settings you have enabled.

CHAPTER 14: More SDK Tools 403

¥ 1 5554Nexus_6_APT_21 L=

Say Hello!

Hi, Developers

Figure 14-27. Running the app on the emulator against the endpoint

Deploying to App Engine

Now that the service is running locally and producing results, you can deploy to Google’s
cloud servers. Deploying to the cloud is simple. Stop your back end if it is running locally.
Use your Google account to log in to the developers console at https://console.
developers.google.com/project. Click the Create Project button to create a new endpoint in
Google’s cloud services. Give the project a name, such as MyBackend, and copy and save
the Project ID that is generated somewhere accessible. See Figure 14-28 as an example.
Click Create, and you will see the progress indicator shown in Figure 14-29. Give it a
moment to allow Google services to finish the process. Returning to Android Studio, find the
appengine-web.xml file and copy the project ID you saved into the application tag. This file
is under src » main » webapp » WEB-INF.

https://console.developers.google.com/project
https://console.developers.google.com/project

404 CHAPTER 14: More SDK Tools

New Project
PROJECT NAME
MyBackend) 4
PROJECT ID
dogwood-sprite-87005 C
Show advanced options...
Figure 14-28. Creating a new Java Endpoints project with Google Developers Console
- i PSS
© https://console.devel.. O ~ nb Hello, Endpoints! |) Google Developers Console X |]
|
Google Developer +Clifton |
g | ® |
U
Billing You do not have any active projects.
Account settings 1
Need help? Projects pending deletion
Terms of service i
Privacy
|
|
U
I
|
N
|
(]
‘ Create Project: MyBackend 2 |
i o |
<« See all activity
—— (l = — = — L

Figure 14-29. Google Developers Console will spin momentarily while it works

CHAPTER 14: More SDK Tools 405

From the top menu, choose Build » Deploy Module to App Engine. Click the Deploy To
drop-down and select your project ID. The first time you ever deploy, you will be required
to sign in to Google as you make this selection. Figure 14-30 shows the login screen after
clicking the Deploy To drop-down.

s

© MainActivityjava x] © AndroidManifestxml x | @ appengine-webxml X @app pe I -5 .Gradletask:
"(?ml version="1.0" encoding="utf-8"2> g+ —

Bcappengim web-app xmlns="http://appengine.google.com/ns/1.0">
: <application>dogwood-sprite-87005</application>

Recent tasks
<version>1</version>
<threadsafe>true</threadsafe> P HelloCloud:backend [appe
i P HelloCloud [appengineUp
Q <system-properties> P HelloCloud [build]

<property name="java.util.logging.config.file" value="WEB-INF/logging P> HelloCloud:backend [appe
4] </system-properties>
(1</appengine-web-app> All tasks

¥ (2 HelloCloud
4+ _appengineEndpoi
& _appengineEndpoi
£¥ androidDependenc
4 appengineConfigu
4 appengineCronlnfi
4% appengineDeleteB;

) Deploy to App Engine

Module:l [backend

ownlo.

Gok;gle" punlo

dpoir

Sign in to Android Studio with your Google account to list your Google dpoir

— Developers Console projects. dpoir
rdpoir

dpoir

hance
‘plode
anctiol

! ‘ 4 appenginelistBack

L nmmamninal ans

Figure 14-30. Sign into Google Developers Console

The sign-in prompt opens a browser window, as shown in Figure 14-31. Click Accept to give
the necessary permissions.

406 CHAPTER 14: More SDK Tools

Google
~ Android Studio would like to:
B now who you are on Google
View your email address 0]

n View and manage your applications deployed on Google
App Engine

[N n View and manage your data across Google Cloud Platform
services

By chcking Accept, you allow this app and Google 10 use your information in
accordanc e with their respective terms of service and privacy polcies. You can

change this and other Account Permissions ot any time.
Cancel m—

Figure 14-31. Google Developers Console permission prompt

After the back end is published, switch to the AsyncTask created earlier and update the
method that loads the API:

private MyApi getMyApiRemote() {
//lazily initialize the API service
if(apiService == null) {
MyApi.Builder builder = new MyApi.Builder(
AndroidHttp.newCompatibleTransport(), new Android]sonFactory(), null)
.setRootUrl("https://{your-project-id}.appspot.com/_ah/api/");
apiService = builder.build();

}

return apiService;

}

Substitute {your-project-id} with the project ID from the project you created online. Build
and run the app on either your device or the emulator, and you should get the same results.

Summary

This chapter explored the various tools available to analyze and design you application. It
looked at the many options available for exploring your app’s performance from different
aspects. You learned to use the new Navigation Editor to quickly prototype ideas that can
later be built into fully fledged applications. Finally, you went into depth on Google’s cloud
service and saw how to build, test, and deploy a client server application by using the
powerful computing engines available from Google. Each of these tools gives you powerful
control and insight and can be used to build robust applications.

Chapter

Android Wear Lab

Android Wear, one of Google’s latest technology innovations, creates opportunities for

much more intimate user experiences. At the time of this writing, only a handful of devices
support Android Wear, but the list is growing. Support is currently only for watches, but as
the technology matures, wearables could include anything from necklaces to actual clothing.
Among these devices are watches from three top manufacturers: Samsung, Motorola, and
Sony. In this chapter, you will learn how to build a wearable app that can be deployed and
run both wired and wirelessly from Android Studio.

Note We invite you to clone this project using Git in order to follow along, though you will be
recreating this project with its own Git repository from scratch. If you do not have Git installed on
your computer, see Chapter 7. Open a Git-bash session in Windows (or a terminal in Mac or Linux)
and navigate to C:\androidBook\reference\ (If you do not have a reference directory, create one. On
Mac navigate to /your-labs-parent-dir/reference/) and issue the following git command: git clone
https://bitbucket.org/csgerber/megadroid MegaDroid.

Setting Up Your Wearable Environment

Before you begin developing wearable apps, you need to take a few steps to prepare your
working environment. While it is possible to develop using only the emulator, it is always
best to have an actual Wear device handy. Make sure your device is running the latest
version of the operating system, and download and install any necessary drivers if you are
working on a Windows PC. Connect your wearable device and look for it in the device list in
the Android DDMS tool window. If it appears, skip the next section.

407

http://dx.doi.org/10.1007/9781430266013_7
https://bitbucket.org/csgerber/megadroid

408 CHAPTER 15: Android Wear Lab

Install Device Drivers

On Windows, you might need to install drivers for some devices if you plan to deploy apps

over USB. Be careful to install drivers only if your device is not recognized when you connect

it. You can skip this section if you plan to use Bluetooth for deploying your apps. The first
time you connect your device, Windows will attempt to automatically install drivers and fail.
Open the Windows Device Manager and find your device in the list, under Other Devices.

Figure 15-1 illustrates what you see.

=4 Device Manager . -

i -

Eile Action View Help
L ol Aol NENN 7 Noal L0

4 = Clifton-PC
4 3 Batteries
» 4™ Computer
b g Disk drives
» Mg Display adapters
b ety DVD/CD-ROM drives
b - Floppy disk drives
2 hH Floppy drive controllers
B afn' Human Interface Devices
b g IDE ATA/ATAPI controllers
» 255 Imaging devices
b= Keyboards
b 8 Mice and other pointing devices
» IS Monitors
b &% Network adapters
4 - J5) Other devices
--‘Tm Gear Live
B Processors
b -3 Sound, videc and game controll
» 4% Storage controllers
oM Systern devices
b-@ Universal Serial Bus controllers

Figure 15-1. The Samsung Gear Live as listed in the Device Manager without drivers

Right-click the uninstalled device and click Update Driver Software from the context menu.
Select Browse My Computer for Driver Software from the pop-up, as shown in Figure 15-2.

CHAPTER 15: Android Wear Lab 409

@ Ul Update Driver Software - Gear Live

How do you want to search for driver software?

Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation

] settings.

2 Browse my computer for driver software
Locate and install driver software manually.

Figure 15-2. Browse your computer for the driver

Click “Let me pick from a list of device drivers on my computer,” as shown in Figure 15-3.

=)
@ [l Update Driver Software - Gear Live

- I 2

Browse for driver software on your computer |

Search for driver software in this location:

C:\Android\sdk\extras\, le\usb_driver| - Browse...

i Include subfolders

2 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

([Net J[Concel |

Figure 15-3. Click the “Let me pick from a list” option

410 CHAPTER 15: Android Wear Lab

Click Android Device, as shown in Figure 15-4.

@ [l Update Driver Software - Gear Live

Select your device's type from the list below.

Common hardware types:

Show All Devices
§ 61883 Device Class
[Android Dpvice
| § AVC Devices
3 Batteries
2 Biometric Devices
9 Bluetooth Radios
1M Computer
a Disk drives
K Display adapters
&4 DVD/CD-ROM drives
| 3 Floppy disk drives il

] »

l Next II Cancel

—= -_—

Figure 15-4. Select Android Device

Choose the composite driver from the next pop-up and then click Next. The vendor for your
driver will vary and may not match the driver in Figure 15-5. You may safely use a composite
driver from any vendor. The driver will install, and you will be all set.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 15: Android Wear Lab 41

S
@ [l Update Driver Software - Gear Live .

Select the device driver you want to install for this hardware.

L"‘. Select the manufacturer and model of your hardware device and then click Next. If you have a
- disk that contains the driver you want to install, click Have Disk.

Model

E4 Mot Composite ADB Interface

=) Motorola ADB Interface

[This driver is digitally signed.

Tell me why driver signing is important

b’ Next H Cancel]

————

Figure 15-5. Select the Composite ADB Interface from any vendor

Set Up Your SDK Tools

Before you begin developing, download and install the SDK platform, version 5.0.1 or higher,
and update the SDK tools to version 24.0.2 or higher. Android Wear support is offered
starting with platform version 4.4W.2 and SDK tools 23.0. However, the examples used in
this chapter use features found in the later SDK platform. You will also want to install the
Samples for the updated SDK platform and the Google Repository under Extras.

Set Up a Wear Virtual Device

Launch the AVD Manager by using the toolbar button or by clicking Tools » Android »
AVD Manager, and then click Create Virtual Device. Select Wear from the Category pane
on the left and select either Android Wear Square or Android Wear Round from the list of
available hardware profiles, as shown in Figure 15-6. Select an API level of 5.0.1 or higher,
as the examples in this chapter require API 5.0.1. Depending on the capabilities of your
development computer, you may want to select an x86 system image. These images use
fewer CPU cycles and generally run faster, because they do not have to emulate a CPU.
However, these system images require the installation of HAXM, the Hardware Accelerated
Execution Manager developed by Intel. HAXM is installed from the SDK Manager. HAXM
depends on Intel Virtualization Technology (VT) support which may not be available on
certain machines. Click the Next button and keep the default values on the last page of the
wizard. Make sure Use Host GPU is selected for optimal speed.

412 CHAPTER 15: Android Wear Lab

Virtual Device Cmﬁgum

Select Hardware

Choose a device definition

, @)
Category | Name * | Size | Resolution | Density
Phone Android Wear Square 165" 280280 hdpi
Tablet Android Wear Round 165" 320:320 hdpi
v
| New Hardware Profile | | Import Hardware Profiles -3

Figure 15-6. Select the Wear category

Choose the latest API level (which is Lollipop at the time of this writing). Then click Next, as
shown in Figure 15-7.

CHAPTER 15: Android Wear Lab

System Image

Select a system image

Android 5.0.1 - android-wear [Android Wea

Release Name APlLevel~ | aBI
I
| Lotlipop 2 86
| KitKat Wear) armeabi-vTa
KitKat Wear) 86

Android 4 4W.2 - android-wear [Android W)

Android 44W.2 - android-wear [Android W/

Lollipop

413

(/] Show downloadable system images

9 -
L

Android

5.0.1
Android

System Image
armeabi-v7a

7 - See documentation for Android 5 APls

]

Figure 15-7. Select Lollipop for the system image

Give your AVD the name Android Wear Square API 21 in the next screen, as shown in

Figure 15-8.

Virtual Device Configuration

Android Virtual Device (AVD)

Verify Configuration

he £ B NN

i AVD Name Android Wear Square AP] 21
§ Android Wear Square 165" 280:280 hdpi
g Loll i i
w ipop Androeid 5.0.1 armeabi-v7a
Startup size
and Scale:
orientation
Emulated (V] Use Host GPU
Performance

|Auto B

[7) Store a snapshot for faster startup

You can either use Host GPU or Snapshots

Figure 15-8. Give your AVD the name Android Wear Square API 21

414 CHAPTER 15: Android Wear Lab

Click Finish to build the AVD. Once it’s built, you can click the drop-down arrow next to the
Wear AVD in the list and duplicate it, as shown in Figure 15-9. If you created a Square AVD,
change your duplicate to use the round form factor; otherwise, change it to use the square
form factor. You want to use both types of form factors to test that your app works well
across as many variations as possible.

Your Virtual Devices
H Android Studio
Ti | Name | Resolution AP Targe! CPU/AEL Size on Disk Actions |
N A ar's Android 50.1 am | 650MB [DdpRca i)
| Duplicaty,
[HewsL 1080 * 1920: sxhelpi L Android L (Preview) am 1G8 Wipe Data .
Show on Disk
[Newsio 2560 * 1600: xhdpi 19 Android 44.2 arm 912 M8 View Details
Delete
[Newss 1080 x 1920: xhdpi 19 Android 442 arm 978 MB oy
D Mexus 6 APT 21 1440 = 2560: 560dpi i Android 501 x86_64 1GB ’ Fad
[0 Hewssapiziz 1440 x 2560: 560dpi 2 Android 501 am 1G8 P 2 |
+ Create Virtual Device... | S
oK Cancel

Figure 15-9. Duplicate your AVD to create Android Wear Round API 21

Set Up Your Android Wear Hardware

If you own a wearable device, you need to set it up to allow development. Wearable apps
are deployed and managed through an Android smartphone or tablet, so you will need one
of these to enable development on your wearable. On an Android smartphone, install the
Android Wear app on Google Play. Launch the app and use it to pair your smartphone with
the wearable.

There are two approaches for deploying apps to a wearable: wired or Bluetooth. Wired is
the easiest option, but Bluetooth is a nice alternative if you are short on USB ports or if you
don’t want to wrestle with device drivers. This could be the case when you are supporting a
smartphone, a tablet, as well as Wear on a computer with only a couple of ports.

CHAPTER 15: Android Wear Lab 415

Enable Developer Mode

If you have never enabled developer mode or your device is brand-new, follow these steps
and you will be able to set up many options such as always-on mode, Bluetooth debugging,
debug layouts, and more:

1. Open the Settings app on your wearable device by pressing and
holding the button on the side for 2 seconds.

2. Scroll to the bottom and tap the About option.

3. When the About screen opens, tap the build number seven times.
Afterward, you will find the Developer option under the About option
in the Settings list.

4. Open the developer options and enable ADB debugging.

Use Bluetooth Debugging

Enable Bluetooth debugging in the Developer Options screen if you wish to work wirelessly.
Next, open your command terminal and run the following two ADB commands:

adb forward tcp:4444 localabstract:/adb-hub
adb connect localhost:4444

Watch the status of the Android Wear app running on your mobile device. It should change
to the following:

Host: connected
Target: connected

At this point, your wearable is ready for app installations.

Creating the MegaDroid Project

This section demonstrates how to create a custom watch-face project based on a fake
video-game character named MegaDroid. You can envision MegaDroid as a mash-up of
two popular '80s video-game characters (which will remain unnamed). The watch face
will embody the persona of a space warrior who fights his enemies with twin swords. The
app would be deployed as an extra with the actual game. Figure 15-10 illustrates the final
result of the exercise. You can use the example as a recipe to bake your branding into the
wrist of your target audience. Support for custom watch faces is a new feature introduced
in Lollipop. This feature enables your app to run as the actual face of the device and opens
opportunities for new types of user experiences. Your app can display information from
various sources including, but not limited to, the Internet, GPS, the paired mobile device’s
calendar or contact list, and more. Since a watch face is a full and constantly running
Android app, it can be used as an overall extension of your app. This example covers
only the basics of drawing the user interface and receiving updates from the runtime to
advance the time.

416 CHAPTER 15: Android Wear Lab

Figure 15-10. The final result of the MegaDroid watch face

Use the New Project Wizard described in Chapter 1 to begin your new Android Wear project.
On the second page of the wizard, select the Wear check box and choose SDK 5.0 or higher,
as shown in Figure 15-11. Leave the default values for the remaining screens, selecting both
a blank activity for the mobile app and a blank Wear activity for the Wear component. Finish
the wizard on the last page and wait for the project to build. Click the Run button to test your
project on your wearable device or AVD.

http://dx.doi.org/10.1007/9781430266013_1

CHAPTER 15: Android Wear Lab 417

[Create New Project

New Project

Android Studio

Select the form factors your app will run on

Different platforms require separate SDKs

@ Phone and Tablet

Minimum SDK | AP119: Android 4.4 (KitKat) n

Lower API levels target more devices, but have fewer features available. By targeting API19 and later, your app will
| run on approximately 24.5% of the devices that are active on the Google Play Store. Help me choose.

O

Minimurn SDK | AP1 20+: Android L (Preview) I
@ Wear *

Minimum SDK | API 21: Android 50 (Lollipop) B
[T Glass (Mot Installed)

Minimum SOK | |

Figure 15-11. Select Wear in the New Project Wizard

Mastering Android layouts and design is critical when designing apps for Wear devices. For
an optimal product, the majority of your initial development would be best spent in your
graphics editor of choice, focused primarily on design approaches, measurements, colors,
and the like. Each watch face is unique, and your approach will vary based on what you
want to accomplish. Designing something as simple as a basic digital clock face requires a
different approach and could take less effort than designing an analog. The online developer
docs on the Android site can be somewhat intimidating to someone who does not have a lot
of design experience. In general, the site suggests that you should design for both square
and round models, decide on how or if you will integrate additional data, allow system Ul
elements to remain visible, and support different display modes. These display modes

are explained in a later section. You might also consider providing a configuration screen.
This example attempts to simplify the process and intentionally ignores some of these
considerations.

Optimize for Screen Technologies

The Wear runtime will execute your app in two display modes: ambient mode and interactive
mode. The watch will toggle in and out of these modes as the app is viewed or used. Ambient
mode is enabled automatically by the system to conserve battery life. As a result, your Wear
app should detect this mode and respond accordingly by changing its display output to use
dim colors. In this mode, updates are sent once per minute, so it makes sense to slow the
number of screen draws as well. This example will remove the second hand in this mode and
change the draw rate from every second to drawing the screen only each minute.

418 CHAPTER 15: Android Wear Lab

Certain devices support low-bit ambient mode. In this mode, the device screen falls back

to a limited color palette. This helps reduce battery use and prevents screen burn-in. You
can detect this mode and adjust your graphics to use only the colors black, white, blue, red,
magenta, green, cyan, and yellow. It is also good to use an outline of your drawing rather
than an entire image. In low-bit mode, your background should be mostly black. Nonblack
pixels should occupy no more than 10 percent of the total pixels, while color pixels should
make up no more than 5 percent of the screen. This is for devices that support this special
drawing mode. You should also disable anti-aliasing as you draw under this mode. Anti-
aliasing is a technique that blurs the edges in your drawing, making them look less pixelated,
as shown in Figures 15-12 and 15-13.

Figure 15-12. An image without anti-aliasing

Figure 15-13. An anti-aliased image

For our example, we will use a grayscale version of our graphics in ambient mode for
simplicity, as shown in Figure 15-14. Copy all of the images from your reference clone into
your current project. On windows, Navigate to the C:\androidBook\reference\MegaDroid\
wear\src\main folder and right click then copy the res directory. Navigate to C:\androidBook\
MegaDroid\wear\src\main\res folder then right click and paste the copied folder over the
existing res folder. On Mac or Linux run the following command from your terminal:

cp -R ~/androidBook/reference/MegaDroid/wear/src/main/res ~/androidBook/MegaDroid/wear/src/main/

CHAPTER 15: Android Wear Lab 419

Figure 15-14. Grayscale artwork

Build the WatchFace Service

A watch-face service is responsible for creating a WatchFaceService.Engine, which

is the core of the watch face. The WatchFaceService.Engine responds to system
callbacks and is responsible for updating the time and drawing the face. Create a new
MegaDroidWatchFaceService class that extends the CanvasWatchFaceService class.

Fill it with the code in Listing 15-1.

Listing 15-1. The MegaDroidWatchFaceService Class

public class MegaDroidWatchFaceService extends CanvasWatchFaceService {
private static final String TAG = "MegaDroidWatchSvc";

@0verride

public Engine onCreateEngine() {
// create and return the watch face engine
return new MegaDroidEngine(this);

/* implement service callback methods */
private class MegaDroidEngine extends CanvasWatchFaceService.Engine {
private final Service service;

public MegaDroidEngine(Service service) {
this.service = service;

}

420 CHAPTER 15: Android Wear Lab

/**
* initialize your watch face
*/
@0verride
public void onCreate(SurfaceHolder holder) {
super.onCreate(holder);

Jx*
* called when system properties are changed
* use this to capture low-bit ambient.
*/
@0verride
public void onPropertiesChanged(Bundle properties) {
super.onPropertiesChanged(properties);

/**
* This is called by the runtime on every minute tick
*/
@0verride
public void onTimeTick() {
super.onTimeTick();

/**
* Called when there's a switched in/out of ambient mode
*/
@0verride
public void onAmbientModeChanged(boolean inAmbientMode) {
super.onAmbientModeChanged(inAmbientMode);

@0verride
public void onDraw(Canvas canvas, Rect bounds) {
//Draw the watch face here

/**

* Called when the watch face becomes visible or invisible
*/

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 15: Android Wear Lab a1

@0verride
public void onVisibilityChanged(boolean visible) {
super.onVisibilityChanged(visible);

}

Register the Service

Add the following in the Android manifest just before the closing application tag:

<service
android:name=".MegaDroidWatchFaceService"
android:label="@string/mega_droid_service_name"
android:allowEmbedded="true"
android:taskAffinity=""
android:permission="android.permission.BIND_WALLPAPER" >
<meta-data
android:name="android.service.wallpaper"
android:resource="@xml/watch_face" />
<meta-data
android:name="com.google.android.wearable.watchface.preview"
android:resource="@drawable/preview_analog" />
<meta-data
android:name="com.google.android.wearable.watchface.preview_circular"
android:resource="@drawable/preview analog circular" />
<intent-filter>
<action android:name="android.service.wallpaper.WallpaperService" />
<category
android:name=
"com.google.android.wearable.watchface.category.WATCH_FACE" />
</intent-filter>
</service>

Press F2 to step through the errors. Press Alt+Enter to bring up suggestions to fix the errors
one by one. The first suggestion will have you generate a name for your new service. This
will be the name that shows on your device in the list of watch-face pictures and names. The
next suggestion is to generate an XML descriptor for the wallpaper metadata tag. Create
xml/watch_face.xml and fill it with the following code:

<?xml version="1.0" encoding="utf-8"?>
<wallpaper xmlns:android="http://schemas.android.com/apk/res/android" />

The next two errors should not be fixed by the Intellid suggestions. These are references

to drawable resources that will become the preview of your watch face in the face picker.
You will want to create these by using your graphics editor. Alternatively, you might take a
screenshot of the app, but this can feel somewhat like putting the cart before the horse. If
you are not familiar with image editors or graphic design programs, you could add a couple
of dummy images here temporarily just to get the app running. You could then go back after
your app looks reasonably finished and take screenshots of the watch running and use these
screenshots.

422 CHAPTER 15: Android Wear Lab

Initialize Drawable Resources and Style

In the onCreate() method, add the following logic to set the style and initialize the drawable
resources:

public void onCreate(SurfaceHolder holder) {

super.onCreate(holder);

setWatchFaceStyle(new WatchFaceStyle.Builder(service)
.setCardPeekMode (WatchFaceStyle.PEEK _MODE_SHORT)
.setStatusBarGravity(Gravity.RIGHT | Gravity.TOP)
.setHotwordIndicatorGravity(Gravity.LEFT | Gravity.TOP)
.setBackgroundVisibility(WatchFaceStyle.BACKGROUND VISIBILITY INTERRUPTIVE)
.setShowSystemUiTime(false)
.build());

Resources resources = service.getResources();

Drawable backgroundDrawable = resources.getDrawable(R.drawable.bg);

this.backgroundBitmap = ((BitmapDrawable) backgroundDrawable).getBitmap();

this.character = ((BitmapDrawable) resources.getDrawable(
R.drawable.character_standing)).getBitmap();

this.logo = ((BitmapDrawable) resources.getDrawable(
R.drawable.megadroid logo)).getBitmap();

this.minuteHand = ((BitmapDrawable) resources.getDrawable(
R.drawable.minute_hand)).getBitmap();

this.hourHand = ((BitmapDrawable) resources.getDrawable(
R.drawable.hour_hand)).getBitmap();

this.secondPaint = new Paint();
secondPaint.setARGB(255, 255, 0, 0);
secondPaint.setStrokeWidth(2.f);
secondPaint.setAntiAlias(true);
secondPaint.setStrokeCap(Paint.Cap.ROUND);

this.time = new Time();

Manage Watch Updates
Add the following two static fields to the enclosing MegaDroid:

private static final long INTERACTIVE_UPDATE_RATE_MS =
TimeUnit.SECONDS.toMillis(1);
private static final int MSG_UPDATE_TIME = 0;

Now define an update handler, which will trigger watch updates based on the INTERACTIVE
UPDATE_RATE_MS constant defined previously:

/** Handler to update the time once a second in interactive mode. */
final Handler mUpdateTimeHandler = new Handler() {
@0verride
public void handleMessage(Message message) {
switch (message.what) {

CHAPTER 15: Android Wear Lab 423

case MSG_UPDATE_TIME:
if (Log.isLoggable(TAG, Log.VERBOSE)) {
Log.v(TAG, "updating time");

invalidate();
if (shouldTimerBeRunning()) {
long timeMs = System.currentTimeMillis();
long delayMs = INTERACTIVE_UPDATE_RATE_MS
- (timeMs % INTERACTIVE UPDATE_RATE_MS);
mUpdateTimeHandler.sendEmptyMessageDelayed(
MSG_UPDATE_TIME, delayMs);

}

break;

}
};
private boolean shouldTimerBeRunning() {
return isVisible() && !isInAmbientMode();
}

This handler will continue to schedule updates based on the update interval after it is initially
invoked. It merely invalidates the display, which triggers an implicit onDraw invocation. Then
it checks whether the watch face is visible and in ambient mode prior to rescheduling future
updates. Implement the onDestroy method as follows to clean up the update handler when
the service is garbage-collected by the runtime:

@0verride

public void onDestroy() {
mUpdateTimeHandler.removeMessages(MSG_UPDATE TIME);
super.onDestroy();

}

Implement the onPropertiesChanged method to track lowBitAmbient mode. Set a Boolean
member variable to track whether ambient mode is running. This is how you will decide
when to drop into a reduced draw rate. Use the following code in the implementation:

public void onPropertiesChanged(Bundle properties) {
super.onPropertiesChanged(properties);
this.lowBitAmbient = properties.getBoolean(
PROPERTY _LOW BIT_AMBIENT, false);
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "onPropertiesChanged: low-bit ambient = " + lowBitAmbient);
}

}
You will also need to define the lowBitAmbient member field:

private boolean lowBitAmbient;

424 CHAPTER 15: Android Wear Lab

Add a call to invalidate in the onTimeTick method. Here you call invalidate, which triggers
a redraw of the screen:

@0verride
public void onTimeTick() {
super.onTimeTick();
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "onTimeTick: ambient = " + isInAmbientMode());

invalidate();

}

Now implement the onAmbientModeChanged callback. Here you use the black-and-white
artwork when in ambient mode. You also will toggle anti-alias drawing off for the second
hand as an optimization, which was explained earlier.

public void onAmbientModeChanged(boolean inAmbientMode) {
super.onAmbientModeChanged(inAmbientMode);
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "onAmbientModeChanged: " + inAmbientMode);

if(inAmbientMode) {
character = ((BitmapDrawable) service.getResources().getDrawable(
R.drawable.character standing greyscale)).getBitmap();
logo = ((BitmapDrawable) service.getResources().getDrawable(
R.drawable.megadroid logo bw)).getBitmap();
hourHand = ((BitmapDrawable) service.getResources().getDrawable(
R.drawable.hour hand bw)).getBitmap();
minuteHand = ((BitmapDrawable) service.getResources()
.getDrawable(R.drawable.minute_hand bw)).getBitmap();
} else {
character = ((BitmapDrawable) service.getResources()
.getDrawable(R.drawable.character standing)).getBitmap();
logo = ((BitmapDrawable) service.getResources()
.getDrawable(R.drawable.megadroid logo)).getBitmap();
hourHand = ((BitmapDrawable) service.getResources()
.getDrawable(R.drawable.hour hand)).getBitmap();
minuteHand = ((BitmapDrawable) service.getResources()
.getDrawable(R.drawable.minute_hand)).getBitmap();

if (LowBitAmbient) {
boolean antiAlias = !inAmbientMode;
secondPaint.setAntiAlias(antiAlias);

}

invalidate();

// Whether the timer should be running depends on whether
//we're in ambient mode (as well

// as whether we're visible), so we may need to start
//or stop the timer.

updateTimer();

CHAPTER 15: Android Wear Lab 425

This calls the updateTimer method, which you will define next. The updateTimer method will
send empty update messages to the mUpdateTimeHandler. You want to send updates only
when the watch face is visible and when it is not in ambient mode. Use the following snippet
as your implementation:

private void updateTimer() {
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "updateTimer");

mUpdateTimeHandler.removeMessages(MSG_UPDATE TIME);

if (shouldTimerBeRunning()) {
mUpdateTimeHandler.sendEmptyMessage(MSG_UPDATE TIME);

}

}

Use Listing 15-2 to define a broadcast receiver to respond to changes in the time zone.
The register and unregister methods will be used to enable the receiver to hear time-zone
change events.

Listing 15-2. The Time-Zone BroadcastReceiver

final BroadcastReceiver mTimeZoneReceiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
time.clear(intent.getStringExtra("time-zone"));
time.setToNow();

};

boolean mRegisteredTimeZoneReceiver = false;

private void registerReceiver() {
if (mRegisteredTimeZoneReceiver) {
return;
}
mRegisteredTimeZoneReceiver = true;
IntentFilter filter = new IntentFilter(Intent.ACTION_ TIMEZONE CHANGED);
service.registerReceiver(mTimeZoneReceiver, filter);

private void unregisterReceiver() {
if (!mRegisteredTimeZoneReceiver) {
return;
}
mRegisteredTimeZoneReceiver = false;
service.unregisterReceiver(mTimeZoneReceiver);

426 CHAPTER 15: Android Wear Lab

This receiver will update the time whenever it receives a message. It is registered with an
IntentFilter, which is tied to the ACTION TIMEZONE_CHANGED action. Using an IntentFilter
is a programmatic way of binding an activity or BroadcastReceiver to a specific type of
intent action.

Now define the onVisibilityChanged callback to register the receiver and start the update
handler:

@0verride
public void onVisibilityChanged(boolean visible) {
super.onVisibilityChanged(visible);
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "onVisibilityChanged: " + visible);
}

if (visible) {
registerReceiver();

// Update time zone in case it changed while we weren't visible.
time.clear(TimeZone.getDefault().getID());
time.setToNow();
} else {
unregisterReceiver();
}

// Whether the timer should be running depends on whether
//we're visible (as well as

// whether we're in ambient mode), so we may need to start
//or stop the timer.

updateTimer();

Draw the Face

Drawing the watch face is where a bulk of your logic will fall. The calls to invalidate
ultimately result in a call to the onDraw method. Inside this method, you will assemble the
various graphics and artwork used to render the face. Each update rotates and draws the
watch hands based on the elapsed hours, minutes, and seconds. Override the onDraw
method and use the code in Listing 15-3.

Listing 15-3. The Full onDraw Method Implementation

public void onDraw(Canvas canvas, Rect bounds) {
time.setToNow();

int width = bounds.width();
int height = bounds.height();

CHAPTER 15: Android Wear Lab 427

// Draw the background, scaled to fit.
if (backgroundScaledBitmap == null
|| backgroundScaledBitmap.getWidth() != width
|| backgroundScaledBitmap.getHeight() != height) {
backgroundScaledBitmap = Bitmap.createScaledBitmap(backgroundBitmap,
width, height, true /* filter */);
}

canvas.drawBitmap(backgroundScaledBitmap, 0, 0, null);

canvas.drawBitmap(character, (width- character.getWidth())/2,
((height- character.getHeight())/2)+ 20, null);
canvas.drawBitmap(logo, (width- logo.getWidth())/2,
(logo.getHeight()*2), null);

float secRot = time.second / 30f * (float) Math.PI;

int minutes = time.minute;

float minRot = minutes / 30f * (float) Math.PI;

float hrRot = ((time.hour + (minutes / 60f)) / 6f) * (float) Math.PI;

// Find the center. Ignore the window insets so that, on round
//watches with a "chin", the watch face is centered on the
//entire screen, not just the usable portion.

float centerX = width / 2f;

float centerY = height / 2f;

Matrix matrix = new Matrix();

int minuteHandX = ((width - minuteHand.getWidth()) / 2)
- (minuteHand.getWidth() / 2);

int minuteHandY = (height - minuteHand.getHeight()) / 2;
matrix.setTranslate(minuteHandX-20, minuteHandY);

float degrees = minRot * (float) (180.0 / Math.PI);
matrix.postRotate(degrees+90, centerX,centerY);
canvas.drawBitmap (minuteHand, matrix, null);

matrix = new Matrix();

int rightArmX = ((width - hourHand.getWidth()) / 2)
+ (hourHand.getWidth() / 2);

int rightArmY = (height - hourHand.getHeight()) / 2;
matrix.setTranslate(rightArmX + 20, rightArmY);
degrees = hrRot * (float) (180.0 / Math.PI);
matrix.postRotate(degrees-90, centerX,centerY);
canvas.drawBitmap(hourHand, matrix, null);

float secLength = centerX - 20;

428 CHAPTER 15: Android Wear Lab

if (!isInAmbientMode()) {
float secX = (float) Math.sin(secRot) * secLength;
float secY = (float) -Math.cos(secRot) * seclLength;
canvas.drawLine(centerX, centerY, centerX + secX,
centerY + secY, secondPaint);

}

Taking this code one section at a time will help you understand the overall flow. You start by
capturing the width and height of the bounds object passed into the method:

int width = bounds.width();
int height = bounds.height();

Next you check for a scaled version of the background and draw it to the screen. The
background needs to be scaled to the given width and height. You need to scale it only
once, as the bounds will be the same on every redraw.

// Draw the background, scaled to fit.
if (backgroundScaledBitmap == null
|| backgroundScaledBitmap.getWidth() != width
|| backgroundScaledBitmap.getHeight() != height) {
backgroundScaledBitmap = Bitmap
.createScaledBitmap(backgroundBitmap,
width, height, true /* filter */);
}

canvas.drawBitmap(backgroundScaledBitmap, 0, 0, null);

Now you draw the character followed by the logo. A twist of math is used to center the
character horizontally, but give him a 20-pixel offset from the vertical center. To center, you
take the difference between the width of the bounds and the width of the character and
divide it in half. The same is done for the height, but then 20 pixels are added for the offset:

canvas.drawBitmap(character, (width- character.getWidth())/2,
((height- character.getHeight())/2)+ 20, null);

canvas.drawBitmap(logo, (width- logo.getWidth())/2,
(logo.getHeight()*2), null);

The next section uses a little geometry to find the rotation angle of the minute, hour, and
second hands. It uses a formula that divides either the elapsed seconds or minutes by 30p.
For the hours, it is a little more involved. You divide the hour by 6 after adding a slight

offset of elapsed minutes. You then take the result and multiply it by p. The minute offset is
calculated by dividing the elapsed minutes into 60 little slices, since each minute is 1/60th of
an hour. The offset is optional. You can omit this part of the calculation if you want the hour
hand to snap directly to the current hour without gradually progressing:

float secRot = time.second / 30f * (float) Math.PI;

int minutes = time.minute;

float minRot = minutes / 30f * (float) Math.PI;

float hrRot = ((time.hour + (minutes / 60f)) / 6f) * (float) Math.PI;

CHAPTER 15: Android Wear Lab 429

Next you find the center of the screen to anchor the hour, minute, and second hands:

float centerX = width / 2f;
float centerY = height / 2f;

Using the center point, you perform a translation and a rotation around the center of the
screen prior to drawing the minute hand. The angle used is calculated by multiplying the
minutes by 180/p. The graphic used in the example points directly to 9 o’clock, so you need
to add 90 degrees to the rotation:

Matrix matrix = new Matrix();

int minuteHandX = ((width - minuteHand.getWidth()) / 2)
- (minuteHand.getWidth() / 2);

int minuteHandY = (height - minuteHand.getHeight()) / 2;

matrix.setTranslate(minuteHandX-20, minuteHandY);

float degrees = minRot * (float) (180.0 / Math.PI);

matrix.postRotate(degrees+90, centerX,centerY);
canvas.drawBitmap(minuteHand, matrix, null);

The hour hand uses an almost identical operation, but since the graphic points opposite the
minute hand, you have to subtract 90 from the rotation angle:

matrix = new Matrix();

int rightArmX = ((width - hourHand.getWidth()) / 2) + (hourHand.getWidth() / 2);
int rightArmY = (height - hourHand.getHeight()) / 2;
matrix.setTranslate(rightArmX + 20, rightArmY);

degrees = hrRot * (float) (180.0 / Math.PI);

matrix.postRotate(degrees-90, centerX,centerY);

canvas.drawBitmap(hourHand, matrix, null);

Finally, you draw the second hand, which is just a red line extending from the center of the
screen. You calculate the length of the second hand by subtracting 20 pixels from the center.
You put the draw logic inside a conditional block that will not fire when the device is in
ambient mode. The ending x coordinate is determined by taking the sine of the rotation
angle and multiplying it by the length. The y coordinate is determined by taking the opposite
of the cosine of the rotation angle and multiplying it by the length. Using these coordinates,
you call the drawLine method on canvas, passing it the center X and Y and adding the
calculated secX and secY to the center to determine the end point of the line. We use the
paint object created in the onCreate method to tie it all together:

float secLength = centerX - 20;

if (!isInAmbientMode()) {
float secX = (float) Math.sin(secRot) * secLength;
float secY = (float) -Math.cos(secRot) * seclLength;
canvas.drawLine(centerX, centerY, centerX + secX,
centerY + secY, secondPaint);

}

Now build and run your watch service and deploy it to the device. Figure 15-15 shows our
example running on a Galaxy Gear Live watch.

430 CHAPTER 15: Android Wear Lab

Figure 15-15. MegaDroid watch face running on the device

Summary

Through this exercise, you learned to design a custom watch face. You learned how to
deploy wearable apps over USB and Bluetooth. You learned to respond to ambient mode
for battery optimization. You discovered the various components involved in designing a
watch face, including the service and the engine as well as custom timers that control the
redraw rate. While this chapter is meant solely as an introduction, several opportunities
exist in the world of wearable apps. Watch faces have full access to system services

and can retrieve calendar entries for custom display, address book contacts, battery life
information, and more.

This book was purchased by tanakasy@fukuoka-edu.ac.jp

Chapter 1 6

Customizing Android Studio

Intellid IDEA, on which Android Studio is based, has been evolving for many years. Part of this
evolution are the many customization features that proliferate with each software release.
These numerous customizable features, combined with hundreds of third-party plug-ins,
make IntelliJ, and now by extension, Android Studio, among the most customizable and
flexible IDEs on the market. In fact, almost anything you can imagine being customized in

an IDE is most likely customizable in Android Studio. The customizable features in Android
Studio are so numerous that we cannot reasonably cover them all. Throughout this book,
we’ve already discussed some of the most important customizable features of Android
Studio, including tool buttons and default layouts (Chapter 2), and live templates, code
generation, and code styles (Chapter 3).

This chapter showcases the balance of those customizable features that we believe have
the most utility for Android developers. To take advantage of the customizable features

in Android Studio, you should familiarize yourself with the Settings keyboard shortcut
command (Ctrl+Alt+S | Cmd+Comma). This action is also available from the main menu at
File » Settings (or if you’re on Mac, then File » Preferences). Both the keyboard shortcut
and the menu action activate the Settings dialog box.

The Settings dialog box is where you will find most of the customizable features in Android
Studio, and we will show you how to navigate many of its tabs and subpanes throughout
this chapter. Please refer to Figure 16-1 as we discuss the features of the Settings dialog
box. The left pane contains a list of customizable features. This list is subdivided into two
sections: Project Settings and IDE Settings. Any changes you make to items in the former
may be applied to either your current project or all projects, while any changes you make
to the latter will be applied across all projects now and in the future. The Settings dialog
box also contains a filter bar along the top left. When you type text into the filter bar, the list
below it will display only entries that match the text.

431

http://dx.doi.org/10.1007/9781430266013_2
http://dx.doi.org/10.1007/9781430266013_3

432 CHAPTER 16: Customizing Android Studio

ECS Y. 202000 0 0O T . e v
@) CodeStyle b Java
Project Settings [Currencies
v Code Style Scheme: | Default (1) n l Manage... |
General Default (1)
Groovy
HTML Tabs and Indents | Spaces | Wrapping and Braces | Blank Lines | JavaDoc | Imports | Amangement = Code Generation |
e R S e 4 2=
XML Maming Order of Members
Compiler (Gradle-based Android Projects)) Prefer m
» Copyright refer longer names -
2 it fiel
File Colors hame prefos pmess ?:n:‘"“'::i
File Encodings ST iy
Gindle Field: | m | [| Static methods
h
Inspections Static field: [] l | Tnst:ln.ce methods
= L Static inner classes
* Language Injections b gl
» Schemas and DTDs Parameter. | | | |
Scopes Local variable: [—| []
Spelling L

Figure 16-1. The Settings dialog box showing Java » Code Generation

Code Style

Although Chapter 3 touched on code styles, we cover this important topic here again

in more detail. Activate the Settings dialog box by pressing Ctrl+Alt+S | Cmd+Comma.
Toggle open the Code Style directory in the left pane and select Java. Then select the Code
Generation tab in the right pane.

If you followed along in Chapter 3, you should see a lowercase m and s in the Field and
Static Field text areas. If you don’t see these letters, type them in their respective fields

now. Assuming you follow the naming convention in Android, which is to name your class
members so that they are prefixed with either an m (which stands for member—for example,
mCurrencies) or an s (which stands for static member—for example, sName), these prefixes
allow Android Studio to generate meaningful method names when you automatically
generate getters, setters, constructors, and other code. We strongly recommend that you
follow this naming convention; and therefore this particular setting is among the most
important that you can set.

Select the Arrangement tab, which is located to the left of the Code Generation tab, as
shown in Figure 16-3. The purpose of the Arrangement tab is to order the code elements

in your source files. Java software developers expect that the member declarations appear
first, followed by constructors, followed by methods, followed by inner classes, and so on.
The Arrangement tab allows you to set the order of your code elements. As a software
developer, you should maintain a clean and organized code base. However, you don’t need
to be concerned about inserting code elements in their proper order because Android Studio
will rearrange them for you automatically. To apply the Arrangement settings, type Ctrl+Alt+L
| Cmd+Alt+L and be sure to select the Rearrange entries check box; then click Run, as
shown in Figure 16-2. The resulting source file elements will be rearranged according to

the order you selected in the Arrangement tab. You can also perform the same function by
selecting Code » Rearrange Code from the main menu.

http://dx.doi.org/10.1007/9781430266013_3
http://dx.doi.org/10.1007/9781430266013_3

CHAPTER 16: Customizing Android Studio 433

(®) Eile ‘C:\androidBook\Currencies\app\src\main\java\com\apress\gerber\currencies\MainActivityjava’
O Selected text

(O Allfiles in directory C:\androidBook\Currencies\app\src\main\java\com\apress\gerber\currencies
(] Optimize imperts

@ Rearrange entries

[C] Only VCS changed text

I:l Do not show this dialog in the future m Help

Figure 16-2. The Settings dialog box showing Java » Arrangement

1 Settings
@
Project Settings [Currencies] [
¥ Codetyle Scheme: | Default (1) n Lh_[amga.. I
General 5
Groovy it
b Tabs and Indents | Spaces | Wrapping and Braces | Blank Lines | JavaDoc | Imperts £
XML Grouping rules
Compiler (Gradle-based Android Projects)
» Copyright ™ Keep getters and setters together
File Colors s ﬁ
Keey thods together
File Encodings CKeep g [—
Gradle [Keep dependent methods together |]
Inspections
» Language Injections Motdhing rules
» Schemas and DTDs
field public static final
Scopes
Spelling field protected static final
> Tasks - -
Template Data Languages field package private static final
Termical field private static final
» Version Control
IDE Settings field public static
Appearance field protected static
Console Folding
» Debugger field package private static
¥ Editor s ST g

Figure 16-3. Reformat Code dialog box with Rearrange Entries selected

Select the Wrapping and Braces tab, shown in Figure 16-4. The purpose of this tab is to
allow you to set how and when code is wrapped. There is no hard-and-fast rule about
wrapping Java code. We prefer to see the opening curly brace at the end of the first
statement of a block of code, while others prefer the symmetry of vertically aligned opening
and closing curly braces. If you’re among those who prefer aligned curly braces, you can
change this setting (along with many others) in the Braces Placement section highlighted

in Figure 16-4 by simply changing the setting from End of Line to Next Line. As you change
the settings, notice how the sample code along the right subpane changes to reflect these
settings.

434 CHAPTER 16: Customizing Android Studio

@) CodeStyle > Java
Proj: ttin irrenci
¥ Code Style SO Scheme: | Default (1) n Manage... I
General s m
Groowy Du(-dt_ b
HTML Tabs and Indents | Spaces - meplngdeMI Blank Lines | Ja
XML ¥ Keep when reformatting
= . : Line breaks E
Compiler (Gradle-based Android Projects) o S 4
» Copyright Control statement in one line E
File Colors Multiple expressions in one line O
File Encodings Simple blocks in one line O
Gradle Simple methods in one line lii]
Inspections Simple classes in one line [
» Language Injections Ensure right margin is not exceeded ~ []
> Schemas and DTDs ¥ Braces phicemant "
Scopes In class declaration End of I!ne
& In method declaration End of line
Spelling Other End of line
» Tasks ¥ [Extends/implements list Do not wrap
Template Data Languages Align when multiline O
Terminal - Extends/impl ts key d Do not wrap
» Version Control ¥ Throws list Do not wrap
Al loa s m

Figure 16-4. The Settings dialog box showing Java » Wrapping and Braces

Take the time to explore the other tabs of the Code Style » Java pane and customize the
code style according to your own preferences. Not only can you apply code style changes to
Java, but you can also apply similar changes to the code styling of HTML, Groovy, and XML.
The XML settings are particularly useful for Android layouts. Once you’re satisfied with your
Code Style settings, you can save them by clicking the Manage button located along the
top of the Code Style pane. In the resulting dialog box called Code Style Schemas, shown in
Figure 16-5, click the Save As button and give your code style a name such as android1. If
you apply your code style changes to the Default scheme, those settings will be the default
for all projects; and if you apply your code style changes to the Project scheme, only the
current project will be affected. As you can see, Android Studio gives you a lot of flexibility
when configuring your code styles.

CHAPTER 16: Customizing Android Studio 435

‘ Save As... l
L pelee |

Default (1)

\ Copy to Project |

I[" Close :

Figure 16-5. The Code Style Schemes dialog box enables you to save your code styles

Appearance, Colors, and Fonts

Many programmers like to invert the color theme of the IDE so that the background is dark.
There is some evidence that an inverted (dark background) color theme reduces eye strain,
but it takes a while to get used to an inverted theme, particularly if you’ve been coding on
a white background for a while. Android Studio comes with three prepackaged themes:
Intellid, Darcula, and Windows. IntelliJ is the default light-background theme; Darcula is the
dark-background theme; and Windows is a retro Windows theme. You can also download
many more themes from ideacolorthemes.org.

Open the Settings dialog box by invoking Ctrl+Alt+S | Cmd+Comma. Type appearance in
the filter bar and select the first instance of Appearance in the list. Change the Theme field
to Darcula. Then press Apply and OK, as shown in Figure 16-6. Android Studio will request
to restart itself, which you should allow. Once Android Studio restarts, your IDE should
resemble Figure 16-7.

http://ideacolorthemes.org

436 CHAPTER 16: Customizing Android Studio

(Q appearance) Appearance
IDE Settings -
Ul Options
Appearance
| v Editor [V Cyclic scrolling in list
Appearance

[¥] Show icons in quick navigation

I} Automatically position mouse cursor on default button

[V Hide navigation popups on focus loss

Theme: ! Darcula n

D Override default fonts by (not recommended):

Nome: [Lco0e U [+
Sie: |12 |
=

Tooltipinitisldelay (msk: 1+« 1 0 0 0 0 0 0 0
0 1200

Figure 16-6. Settings dialog box with Appearance Theme set to Darcula

Figure 16-7. The Android Studio IDE with the Darcula theme applied

Using the prepackaged themes that come with Android Studio is the easiest way to change
color themes, but if you’re inclined to further customize colors and fonts, you can do so by
tweaking the settings under Editor » Colors and Fonts, as shown in Figure 16-8. If you want
to save your new color scheme, you can do so by clicking the Save As button and giving
your color scheme a name.

CHAPTER 16: Customizing Android Studio 437

@) Editor » Colors & Fonts » Java

Project Settings [Currencies]

Code Style Scheme name: | Default & | Save As...

Compiler (Gradle-based Android Projects)

v

» Copyright
File Colors Nurnber
File Encodings String
Gradle Valid escape in string
Inspections Invalid escape in string
» Language Injections Operator sign
» Schemas and DTDs Parentheses
Scopes Braces
Spelling El'!ckets
» Tasks omma
Template Data Languages Semicolon
i Dot
Terminal
¥ Version Control Line comment

Block comment

IDESextiig lavaline comment
Appearance =
Console Felding 1ii/* Block comment */
» Debugger 2!import java.util.Date;
¥ Editor 3 ;_'-.. . .
Smart Keys 4” lass</codex>
Appearance 2
¥ Colors & Fonts 7: BAnnotation (name=value)
Font 8ipublic class SomeClass<T extends Runnable> { // scme comment
General 9| private T field = null:
Language Defaults 10/ private double unusedField = 12345.67290;
Console Colors 11 private UnknownIype anotherString = "Another\nStrin\g";
Console Font 12 public static int staticField = 0;
Custom 13!
Debugger 14 public SomeClass{AnInterface param, int[] reassignedParam)| {
15/ ing localVar = "TnrelliJ": // Errcr, incompatible typss
Android Logcat 16 System.out.println{anotherString + toString() + localVar);
Groovy 1744 long time = Date.pazse("1.2.3"); // Method is deprecated
HTML i8] int reassignedValue = this.staticField;

Figure 16-8. Settings » Colors and Fonts » Java

Keymap

If you’re not certain about any of the keyboard shortcuts, you can always refer to the quick
reference by navigating to Help » Default Keymap Reference. This command opens a PDF
file in a browser located on a JetBrains server at jetbrains.com/idea/docs/IntelliJIDEA
ReferenceCard.pdf.

If you'd like to modify the default keymap, you can do this by activating the Settings

dialog box (Ctrl+Alt+S | Cmd+Comma) and then typing keymap in the filter bar. The Keymap
entries are organized by menu, as shown in Figure 16-9. Before you begin customizing the
keymap, click the Copy button along the top of the subpane to copy all the keymap settings
from Default to a new keymap schema that you can now name as you like. Double-clicking
any of the entries enables you to modify or add any keyboard or mouse shortcuts that

you like, so long as these new commands don’t conflict with any existing ones. If you are
frequently using certain commands that don’t have existing shortcuts, create a keyboard or
mouse shortcut for them.

http://jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
http://jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf

438 CHAPTER 16: Customizing Android Studio

(Dl keymap | Keymap
rer——— e o) (o] [] (o]
e -
IFk @)R8
v Dea
+ Undo CtisZ AteBackspace
Redo Cirl+SheftsZ Alts+Shift+Backspace
36 Cut CtlsX ShiftsDelete
[0 Cepy CHieC Ctdalnset
Copy Paths Chri+ShifesC
Copy Reference Ctrl A+ Shift+ C
(il Paste Ctrls¥ Shiftslnsert
Paste from History.. Ctrl+Shift+¥ Ctrl+Shiftslnsert
Paste Sirmple Ctul it + Shift+V
Delete Delete
» [IFnd
*» [0 Macios
Column Selection Mode A+ ShiftsInsert
Select AN Crrlssy
Select Word at Caret CrrleW
Urisefect Word at Caret Ctrd + Shift+ W
Complete Current Statement Ctrl«Shift+Enter
Join Lines Ctrd +Shift+)
Filll Paragraph
Duplicate Line or Block Cerl+D
Indent Selection Mab
Unindent Selection Shift+Tab
Taggle Case Ctrl+Shiftsll
L B
m Cancel Help

Figure 16-9. From Settings » Keymap, double-click entries to modify or create keyboard shortcuts

Macros

As you considered the existing commands available to you from the preceding “Keymap”
section, you probably wondered if there is a way to customize a command itself, and not
just the keyboard or mouse shortcut that activates that command. Well, there is—it’s called
a macro. Macros give you the opportunity to record any event or sequence of events in
Android Studio and play them back at will.

Let’s create a macro that issues a Monkey command. Open a terminal session by clicking
the Terminal tool button along the bottom margin of the IDE. Navigate to Edit » Macros
» Start Macro Recording. Type adb shell monkey -v 2000 in the terminal session. Along
the bottom right of the status bar, you will see a green message box that reads, “Macro
recording started,” as shown in Figure 16-10. Click the red stop button on the left. In

the resulting dialog box, type monkey and click OK, as shown in Figure 16-11. You can
now select this macro by navigating to Edit » Macros » Monkey. You can also assign

a keyboard or mouse shortcut to this macro by following the instructions in the previous
section.

CHAPTER 16: Customizing Android Studio 439

Lt d'\'__l:,'_f'lk"_lacro recording started... J
5418 CRLF : UTF-8 + Gittesting : b & I

Figure 16-10. Macro recording status in the status bar

\ *. Enter Macro Name

I 2 Enter macro name. Leave blank if macro is temporary.

|_monke)~|
K | e

Figure 16-11. Enter monkey as the macro name

File and Code Templates

File and code templates are useful for creating files or blocks of code that are used
frequently. Every time you create a new activity in Android Studio, a file template is used to
generate that code. In this section, you will create your own custom Code Template called
CurrencylLayout based on the code you completed in Chapter 9.

Activate the Settings dialog box by pressing Ctrl+Alt+S | Cmd+Comma. Type file and code
templates in the filter bar. Click the Templates tab and then click the green plus arrow along
the top of the File and Code Templates subpane. Copy and paste the code from Listing 9-1
(in Chapter 9) into the right subpane, or if you’re reading this book in print format, type the
code in Listing 9-1 into the right subpane, as shown in Figure 16-12. Name your template
CurrencyLayout in the Name field, and type xml in the Extension field. The Description field
describes how to use variables in your file and code templates, though we won’t use any
variables in this simple example. Click Apply and then click OK. In the Project tool window,
right-click (Ctrl-click on Mac) the res/layout directory and choose New » CurrencylLayout,
as shown in Figure 16-13. In the resulting dialog box, name your file activity_currency

and click OK. Android Studio will generate a new XML layout file for you called activity
currency.xml, which contains the code you used in your file template definition. The
Currencylayout file template provides a good skeleton from which we can create entirely
new XML layouts. You are not limited to XML files; you can just as easily create file templates
for Java or HTML files as well.

http://dx.doi.org/10.1007/9781430266013_9
http://dx.doi.org/10.1007/9781430266013_9

440

CHAPTER 16: Customizing Android Studio

(Cfile and code templates

Project Settings [Currencies]

IDE Settings

PEPEEE
i

;“E
|
|

& Gradle Build Script

& Gradle Buld Script with wrapper

[0 asyclsen
5 Singletan

Mame: [Currencylayout i&l.mm [xml

[Refarmat according to style

<7ml version="1.0" encoding="utf-§"7>

<Linearlaycut xmins:android="http://schesas.android.com/apk/res/android”
android: layout_width="rill parent”
android: layout_height="fill parent”
android:backgrounds*§000*
android:orientation="vertical™>

<Linsarlayout
android: layout_width="fill parent”
android:layout height="0dp"
android:layout weight="20"
android:orientation="vertical®>

<TextView
android: layout_width="rill _parent”
android: layout_hedght="0dp"
android:layout_marginleft="10dp"
android:layout marginRight="10dp"
android:layout_weight="30"
android:gravity="bottom”
android: text="Foraign Currency”
android: textColor="#f122e3 0" />

<Spinner

Description

Along with static text, code and comments, you can also use predefined vaniables
{listed below) that will then be expanded ke macros into the corresponding values.
It is also possible to specify an arbitrary number of custom variables in the fermat
${<VARIABLE_NAME>}. In this case, before the new file is created, you will be
prompted with a dialog where you can define particular values for all custom
vanables.

Using the #parse directive, you can indude templates from the Includes tab, by
speafying the full name of the desired asa n ion marks.
For example:

#parse(“File Header.java™)

Predefined variables will take the following values:

SIDACKACE MAMEYL e b H el i ssibisk B s il ie e ko

Figure 16-12. From Settings » File and Code Templates, create the CurrencyLayout file template

= f:anrfstsh 5 |62 startActivity (mai
© AndroidManifest.xml | 63 £inish():
Elisn Layout resource file
v [EJcom. M Cut R B Fite ceptio
© i :
&2 [31 Copy CtrlsC EI Directory i
:' ? Copy Path Ctrl+Shift+C "W Image Asset ashAct
; 2 Copy Reference Ctrl+Alt+Shift+C E Currencylayout ere's
= st.LEN
» [E1com. [Paste Ctrl+V Edit File Templates...
LS res Find Usages Alt+F7 g AIDL »
» [Eldraw Findin Path.. Ctrl+Shift+F i Activity .
© [Ellayo. Replacein Path... Ctrl+Shift+R | Folder , KIrace
B, Analyze P i Fragment »
@ Refactor » ' Google »
= I‘I
=8 Add to Favorites N : Other »
e Show Image Thumbnails Ctrl+Shift+T ':' Service 4
ariants
et ' Ul Component 4
Module i::m_“t = SR | G Wea {
imize Imports... rl+Alt+ :
= Delete... Delete Iil et >
W XML »
Make Module ‘app’ Ctrl+Shift+F9

Figure 16-13. Right-click the res/layout directory and choose New » CurrencyLayout

This book was purchased by tanakasy@fukuoka-edu.ac.jp

CHAPTER 16: Customizing Android Studio a4

Menus and Toolbars

Very little in Android Studio is beyond customization. If you don't like the menus and
toolbars, you can modify them too. In this section, you’ll add the Monkey command to the
Analyze menu.

Activate the Settings dialog box by pressing Ctrl+Alt+S | Cmd+Comma. Type menus and
toolbars in the filter bar and select the Menus and Toolbars item in the list. From the main
menu, choose Analyze » AnalyzeActions to toggle open the directory. Select Analyze Module
Dependencies and click the Add After button, shown in Figure 16-14. In the resulting dialog
box, navigate to All Actions » Main menu » Edit » Macros » Monkey. As shown in

Figure 16-15, click OK to dismiss that dialog box and click OK once again to save your
changes. To see and activate the change you just made, open a terminal session and navigate
to Analyze » Monkey.

(Q menus and toolbars) Mﬂfm

-IDE Settings v [Main menu

Keymap » 3 File
Menus and Toolbars 3 Edit

3 View

B3 Navigate

[Code

[Analyze

» [Inspect Code Actions

4 vYvYvYY

v [AnalyzeActions
Analyze Dependencies...
Analyze Backward Dependencies...
Analyze Dependencies on Specified Target
Analyze Module Dependencies...
» [Analyze Java Menu
» [Refactor
» [Build
» B3 Run

Figure 16-14. From Settings » Menus and Toolbars, create the Monkey action item in the Analyze menu

442 CHAPTER 16: Customizing Android Studio

Icon Path:

Paste from History...
Paste Simple

1 Macros
Play Back Last Macro
Start/Stop Macro Recording
Edit Macros
Play Saved Macros...

adb-start-server

adb-devices
Column Selection Mode
Select All
Select Word at Caret
Unselect Word at Caret

Complete Current Statement

o JEER

Figure 16-15. Select Monkey from the Macros options

Plug-ins

Many third-party plug-ins are available to use with Android Studio. In this section,

you’ll install the Bitbucket plug-in, which is one of hundreds of plug-ins for Android Studio.
To view a comprehensive list of plug-ins, point your browser to:
plugins.jetbrains.com/?androidstudio.

Activate the Settings dialog box by pressing Ctrl+Alt+S | Cmd+Comma. Type plugins in the
filter bar and select the Plugins item in the list below. Click the Browse Repositories button
along the bottom of the Plugins subpane, shown in Figure 16-16. Type bitbucket in the
search bar along the top of the resulting dialog box, shown in Figure 16-17. Click the Install
button, and Android Studio will install the Bitbucket plug-in. Click the Close button, and
Android Studio will request a restart, which you should allow. If you browse the VCS »
Checkout from Version Control menu, as well as the VCS » Import into Version Control
menu, you will notice some new menu items related to Bitbucket. The Bitbucket plug-in
facilitates the remote management of your Git repositories. See Chapter 7 for a thorough
discussion of Git.

http://plugins.jetbrains.com/?androidstudio
http://dx.doi.org/10.1007/9781430266013_7

CHAPTER 16: Customizing Android Studio 443

\

(Qplugin
| Project Settings [Currencies]
Inspections
¥ Version Control
| Subversion]
IDE Settings
File and Code Templates

ezt o e ey

Usage Statistics

Figure 16-16. From Settings » Plugins, select Browse Repositories

444 CHAPTER 16: Customizing Android Studio

(@ bitbucket) D [categony: an -
Sort by: name * INTEGRATION
& Bitbucket e Bitbucket
VES INTEGRATION e
.o Buildwatcher T [Install plugin
" 7 drickedrk 150170 downloa
« Eclipser aad drirdedrk shotede
4 Java Decompiler Intelli) Plugin 57 frieiededr The plugin enables you to checkout your existing
. £ TOOLS 11 mont repository and auto-open it as a project or share a
. Php Inspections (EA Extended) 5745 Wik project on B instantly

Change Notes
121

‘@ Fixes for PyCharm 2.7, PhpStorm 6

» Fixes for [dea 12

1111

@ Push fixes for Idea 11
1.1.10

@ Tasks support: PivolalTrackerRepository parseDate() fix
for new IDE versions

| HTTP Proxy Settings... | | IManage repositories... |

Figure 16-17. Search for the Bitbucket plug-in and install it

Summary

This chapter covered the Settings dialog box. You also reviewed code styles, which were
introduced in Chapter 3. You learned how to save a new code style scheme and how to
change the appearance of Android Studio, as well as tweak an existing theme and save that
theme. You also learned how to modify the keymap and save your own keymap schema.
You created a macro and then inserted that macro in a menu bar. You also used file and
code templates, modified the menus and toolbars, and finally learned to manage Plug-ins.

Don’t forget that we already covered customizing tool buttons (Chapter 2), default layouts
(Chapter 2), and live templates (Chapter 3). Live templates, in particular, are among the most
important customization features in Android Studio. A lot more customization is possible

in Android Studio than we’ve covered in this book, and many customization features lend
themselves to self-discovery. Revisit the Settings dialog box (Ctrl+Alt+S | Cmd+Comma) and
explore the many customization features available there.

http://dx.doi.org/10.1007/9781430266013_3
http://dx.doi.org/10.1007/9781430266013_2
http://dx.doi.org/10.1007/9781430266013_2
http://dx.doi.org/10.1007/9781430266013_3

Index

A

ActivityThread.main method, 373
add() method, 58, 61, 66
Advanced refactoring operations
constructor, 86
Convert Anonymous to Inner, 86-87
encapsulation, 83
pushing members down and pulling
members up, 81-82
removal, 81
replace inheritance with delegation, 82
wrap return value, 84
Allocation tracker, 374-375, 382
Ambient mode, 417
Analytical tools
Analyze Dependencies
operation, 308-309
Inspect Code operation, 307-308
Lint, 307
stacktrace, 309
Android convention. See Splash screen
Android DDMS, 110
Android DDMS tool window, 310
Android Debug Bridge (ADB), 25
Android Device Monitor (ADM)
allocation tracker, 374-375
Gradle Weather app, 371-372
heap monitor, 373-374
multiple perspectives and examine, 371
Network Statistics tab, 375-376
thread monitor, 372
view hierarchy dump, 376
Gradle Weather Ul, 377, 379
Open Perspective, 378
View.GONE constant property, 377
View.INVISIBLE constant
property, 377

Android monitor integration

allocation tracker, 382
memory monitor, 379-380
Method Trace tool, 380-382
Screen Capture tool, 382-383

Android Studio, 1, 27

AVDs (see Android Virtual Devices (AVDs))
Commander tool window, 35
common operations
Cut, Copy and Paste commands, 39
find recent files, 38
recent navigation operations, 38
text editor, 38
Undo and Redo commands, 38
completion, 14
components, 13
configuration settings, 14
context menus, 40
default layout, 31
editor tabs, 29
editor window, 28
Favorites tool window, 34-35
Find and Replace action, 43
gutter, 30
HelloWorld project creation, 15-16
Help menu, 40
Installation Wizard, 13
keyboard navigation
Class, 41
Declaration action, 43
File action, 42
Last Edit Location action, 42
Line action, 42
Related File action, 42
Select In context menu, 41
Type Hierarchy, 42
Mac (see Mac)
marker bar, 30

445

446 Index

Android Studio (cont.)
navigation bar, 36
navigation tool windows, 32
Project tool window, 32-33
Setup Wizard, 15
status bar, 36-37
Structure tool window, 33-34
TODO tool window, 35
toolbar, 36
tool buttons, 30
Windows (see Windows)

Android Studio customization, 431
appearance, colors, and fonts, 435
code style, 432
file and code templates, 439
keymap, 437
macros, 438
menus and toolbars, 441
plug-ins, 442

Android Virtual Devices (AVDs)
emulation, 19
execution, 22
Galaxy Nexus hardware, 20
HelloWorld project creation, 23-25
icon, 20
simulation, 19
x86_64 system image selection, 21

Android Wear Lab
Bluetooth debugging, 415
developer mode, 415
device drivers installation, 408
MegaDroid Project (see MegaDroid

Project)
SDK tools, 411
virtual device
Android Wear Round API 21
creation, 414
Android Wear Square API 21, 413
hardware profiles, 412
system image, 413
Application Not Responding (ANR), 286
assertEquals() method, 303

Bitcoin (BTC), 241
Bluetooth debugging, 415
Breakpoints dialog box, 331-332, 334

C

calculateAnswer() method, 321, 334
Call stack, 330

Change Signature operation, 71
checkAnswer() method, 321, 326
Code folding

def

inition, 45

Enter Action or Option Name

dialog box, 46

folding outline, 46
onCreate() method, 47
options, 47
Code generation
add() method, 58
constructor dialog box, 52-53

def
Del

inition, 51
egate method, 57

getter and setter methods, 53-54
method overriding, 55-56
toString() method, 57

Colors
def

inition, 252

dialog box, 253
formats, 252
layout, 253
Constructor. See Factory method
Convert Anonymous to Inner, 87
Currencies app, 267
active currency codes, 241
ANR error, 286
ArrayAdapter class, 273
button’s behavior, 283
button_selector, 292
colors, 252
CurrencyConverterTask

definition, 287

dolnBackground() method, 287, 290
onPostExecute() method, 291
onPreExecute() method, 288, 290

delegate spinner behavior,

MainActivity, 274

extract code, 278
FetchCodesTask, 261
findPositionGivenCode() method, 278

Git

repository, 246

JSON parser, 257

Index 447

keys.properties file, 283
getKey() method, 285
onCreate() method, 286
open_key, 284

launcher icon, 294

MainActivity, 248, 264

meaning, 241

members and assign references
findViewByld() method, 268
MainActivity class, 267
setContentView() method, 268

options menu
add permissions, 271
app:showAsAction property, 270
invertCurrencies() method, 271
isOnline() method, 271
launchBrowser() method, 271
menu_main.xml, 269
onOptionsltemSelected()

method, 270, 272

orderInCategory property, 270

position given code method, 278

preferences manager class, 276

shared preferences
invertCurrencies() method, 282
onCreate() method, 281
onltemSelected() method, 281

spinner_closed layout, 273

splash activity, 259

splash screen, 242

styles
creates and applies styles, 256
extract, 256
labels, 254
TextView elements, 254

Ul thread, 286

unpack currency codes, 269

Debugging, 313
breakpoints dialog box, 331-333
call stack, 330
conditional breakpoints, 335
arrays.xml, 334
building and running, 336
calculateAnswer() method, 334
Debugger tool window, 330-331
DebugMe App, 317

findViewByld(R.id.txtAnswer)
expression, 325
interactive debugger
Debug tool window, 321, 323-324
Log.d() method, 324
MainActivity class, 323
running state, 322
logging
android.util.Log, 316
circular buffer, 313
definition, 313
logcat, 314
stack trace
Check Is Tapped, 328
definition, 327
EditText control, 330
exception/throwable objects, 328
if/else if logic, 330
isNumeric method, 330
Default layout, 31
Delegate method, 57
Delegation. See Inheritance
dolnBackground() method, 262, 402
drawLine method, 429

Editor tabs, 29
Editor window, 28
Encapsulation, 83
Extract operations
constants, 76
field converts, 77
method, 78
parameter, 78
variable, 76

F

Factory method, 86
Favorites tool window, 34
Fetching currency codes
debug window, 264
dolnBackground and onPostExecute
methods, 262
JSONODbject and AsyncTask imports, 262
onCreate() method, 261
SplashActivity.java class, 262
findViewByld() method, 300

Index

G

getVisibility() method, 326

branching, 152
cloning, 150
commits, 160
default section, 147
Detached HEAD mode, 174
fireAboutDialog method, 172
flow command, 152
forking, 148
gitignore files, 146
ImportantReminders, 169
installation, 143
log tab, 151
merging, 165
changelist dialog, 166
check box dialog, 166
commit history, 167
confirmation dialog, 166
Rebase branch dialog, 172
relative references, 175
BroadcastReceiver, 176
Rebase conflict, 177
SetAlarm changelist, 177
remote repository
pull model, 185
pull request, 184
push model, 185
reset command, 163
reset dialog, 168
Resolve conflict
Bitbucket host, 184
changes view, 178
context menu, 178
merge editor, 180
merge option, 179
notifications, 183
rebasing, 181
SetAlarm commit, 181
TimePickerDialog, 182
revert command
deprecation warnings, 161
IDE command, 163
timeline visualization, 162
ScheduledReminders
BroadcastReceiver, 157

changelist, 153
commit changes dialog, 157
creation, 152
diff button, 158
else block, 154
onltemClicked method, 153
onReceive() method, 156
OnTimeSetListener, 159
RemindersActivity class, 155
reminder variable, 154
string constant, 156
time picker dialog, 154-155
unversioned files section, 147
Git repository
commit changes dialog box, 248
directory selection, 247
project tool window, 246
Google Cloud Tools, 390, 404
API, 406
appengineEndpointsinstall
ClientLibs, 398
browser window, 405
build.gradle file, 400
Client Libraries, 399
HelloCloud Front End, 394

Java Endpoints Back-End Module, 395

onPostExecute method, 402
progress indicator, 403-404
RemoteCloudBeanAsyncTask, 402

RemoteCloudBeanAsyncTask Class

Definition, 401
Gradle, 339
Android library
AAR format, 356
Add No Activity option, 355
build.gradle file, 355
definition, 352

Java dependency (see Java library

dependency)

module, 353

NationalWeatherRequest, 356

project() method, 357

R.txt file, 356

SDK levels, 354

setlconLink method, 368

Third-party libraries, 366

WeatherRequest, 357
Android project structure, 342

Index 449

build script, 341

build system
repository, 342
source sets, 342

configuration blocks, 340

DSL method, 369

Intellid core build system, 342

plug-in error, 368

plug-ins, 341

project depencies, 343

task blocks, 340

Weather project
activity layout, 352
app\build.gradle, 346
build.gradle, 344-346
buildscript block, 347
buildTypes{} block, 347
defaultConfig {} block, 347
dependencies {} block, 347
local.properties file, 347
SystemUiHider, 345
TemperatureAdapter class, 347, 349
TemperatureData class, 345, 347
Temperatureltem class, 347, 349, 351
temperature layout, 350

Gutter, 30

hasAlpha() method, 55
Heap monitor, 373-374

IDE. See Integrated development

environment (IDE)

Inheritance, 82
Instrumentation test

Android SDK, 305-306

definition, 298

isNumeric() Method, 305

MainActivity.java class, 301

onClick() method, 305

onPostExecute() method, 301

performClick() method, 303

proxyCurrencyConverterTask()
method, 303

setUp() method, 298

Simulate CurrencyConverterTask and
Wait for Termination, 302
tearDown() method, 298
testFloat() method, 303-304
testinteger() method, 303
Integrated development environment
(IDE), 27-28
terminal tab, 391
Intellid core build system, 342
Interactive mode, 417
isNumeric() method, 305, 330

J, K

Java library dependency
build.gradle file, 360
dependencies {} block, 360
ImageViews, 366
JAR library, 358
JUnit framework, 359
kXML, 359, 362
NationalWeatherRequestData object, 363
NationalWeatherRequest object, 362
setUp method, 361
String replaceAll() method, 361
TemperatureAdapter class, 364
WeatherParse module, 362
WeatherParseTest, 360
WeatherRequest module, 361
XmlPullParser, 361

Java Runtime Edition (JRE), 5

JSON parser, 257

L

Layout designs

activity
Activity class, 187
life-cycle methods, 188

design mode, 193

display sizes, 216

drawable folder, 216

fragments
BuddyDetailFragment class, 230
BuddyListFragment, 228
empty_fragment_container, 232
FragmentManager transaction, 236
onCreate() method, 236

450 Index

Layout designs (cont.)

onListltemSelected() method, 237

on phone, 238
on tablet, 238
ProfileActivity, 231
FrameLayout, 194
IDs components
MainActivity class, 225
onCreate() method, 223
onListltemClick() method, 224
ProfileActivity class, 224
update usages, 221
LinearLayout, 197
ListView widget, 208
BaseAdapter, 213
convertView() method, 215
ListActivity, 210
onCreate() method, 212
PersonAdapter, 212
screenshot, 211
setListAdapter method, 210
tools:listitem attribute, 212
nested layouts
layout_below attribute, 206
layout:margin property, 202
relative_example.xml, 207
TextView, 202
PersonActivity class, 227
pixel density, 216
preview pane
description, 190
reference, 191
RelativeLayout
code behind, 200
ImageView, 201
PlainTextView, 199
sym_def_app_icon, 198
screen resolution, 216
view and view-group, 188
width and height, 191
Lint, 307
Log.d() method, 324
Logging
android.util.Log, 316
circular buffer, 313
definition, 313
logcat, 314
lowBitAmbient mode, 423

Mac
Java Development Kit
configuration, 12
download button, 9-10
execution, 10-11
installation, 8
MainActivity, 248, 264
Main menu bar, 36
Marker bar, 30
MegaDroid Project
Ambient mode, 417
anti-aliased image, 418
grayscale version, 419
interactive mode, 417
INTERACTIVE_UPDATE_RATE_MS
constant, 422-423
layouts and design, 417
lowBitAmbient mode, 423
New Project Wizard, 417
onAmbientModeChanged
callback, 424
onDestroy method, 423
onDraw method, 426
onTimeTick method, 424
onVisibilityChanged callback, 426
Time-Zone BroadcastReceiver, 425
updateTimer method, 425
watch face, 415
watch-face service
application tag, 421
CanvasWatchFaceService
class, 419-420
drawable resources, 422
style, 422
xml/watch_face.xml, 421
Memory monitor, 379-380
MessageQueue.next method, 372
Method Trace tool, 380
Modify layout. See MainActivity

Navigation bar, 36

Navigation Editor
connecting activities, 387
definition, 384
FaceBox menu edition, 390

This book was purchased by tanakasy@fukuoka-edu.ac.jp

Index 451

new activity option, 387
opening, 386
user interface, 385
wireframing/diagramming tools, 384
Navigation tool windows, 32
Network Statistics tab, 375-376

0

Object-oriented programming

code-completion
features, 48
New Class dialog box creation, 49
options, 48
SmartType, 50
String Javadoc window, 50
suggestion, 47

code folding
definition, 45
Enter Action or Option Name

dialog box, 46

folding outline, 46
onCreate() method, 47
options, 47

code generation (see Code generation)

code style settings, 62
Auto-Indent Lines, 64
code-organizing options, 64
rearrange code, 64
reformat code, 65
Surround With options, 65-66
Wrapping and Braces tab, 63
comments, 51
live templates, 60
Move Statement and Move Line, 61
onAmbientModeChanged
callback, 424
onCreate() method, 47, 300, 316, 321,
323, 326, 422, 429
onCreateOptionsMenu() methods, 261
onDestroy method, 423
onDraw method, 426
onOptionsltemSelected() methods, 261
onPostExecute() methods, 262, 301, 402
onPropertiesChanged method, 423
onTimeTick method, 424
onVisibilityChanged callback, 426

PQ

performClick() method, 303
Project tool window, 32-33
Pushing members down and pulling

members up, 81

Refactoring operations. See also
Advanced refactoring operations
change signature, 71
context menu, 70
copy, 75
delete, 75
errors, 69
extract operations
constants, 76
field converts, 77
method, 78
parameter, 78
variable, 76
move, 73
rename, 71
type migration, 72

Reminders app, 90

adding/removing, 121

context action menu, 130

context menu, 93

createReminder() method, 122

edit layout, 95

Edit Reminder dialog, 94

Extract Method, 122

Git repository, 96
commit changes dialog, 97
directory, 96

grouped layouts, 129

insertSomeReminders() method, 123

menu options, 91

MultiChoiceModeListener, 132

RemindersActivity, 94

RemindersDbAdapter, 133
custom dialog box, 134
custom icon, 142
fireCustomDialog() method, 137
Image Asset dialog, 141
LinearLayout, 135

452 Index

Reminders app (cont.)
mCursorAdapter.changeCursor()
method, 138
onOptionsltemSelected()
method, 139

Toast.makeText() method, 139
updateReminder() method, 138

resource qualifiers, 129

SQLite database, 110
bindView method, 117
Callback methods, 113
CRUD operations, 114
Cursor array, 117
DatabaseHelper, 112-113
onCreate method, 113
Reminder class, 110
RemindersDbAdapter, 112, 119
RemindersSimpleCursorAdapter., 117
SimpleCursorAdapter class, 116-118

Tapping Exit, 92

user interaction
onltemClick() method, 125
toast message, 124

Visual designer (see Visual designer)

Revert vs. reset commands, 165

S

Screen Capture tool, 383
setUp() method, 298
showAnswer() method, 321
Splash screen
activity creation, 259
APl level, 246
currencies, 242
EditText control, 243
input value, 242
new project, 246
View Active Codes, Invert Codes and
Exit, 245
Stack trace
Check Is Tapped, 328
definition, 327
EditText control, 330
exception/throwable objects, 328
if/else if logic, 330
isNumeric method, 330

Status bar, 36-37
Structure tool window, 33-34
Styles
creates and applies styles, 256
extract, 256
labels, 254
TextView elements, 254

T

tearDown() method, 298
testFloat() method, 303-304
Testing, 297

testinteger() method, 303
Thread, 286

Thread monitor, 372
TODO tool window, 35
Toolbar, 36

Tool buttons, 30

Tool windows, 28
toString() method, 57, 66
Type migration, 72

Ul/Application Exerciser Monkey, 305-306
updateTimer method, 425

'}

Visual designer
action bar menu
Android DDMS, 110
onOptionsltemSelected
method, 109
RemindersActivity, 108
Change Orientation button, 102
colors, 104
Control palette, 98
layout, 98
LinearLayout, 102, 106
ListView, 99
ArrayAdapter, 107
code implementation, 107
commit messages, 108
onCreate method, 106
New Color Value Resource
dialog box, 101

Index

preview pane, 98, 104
Reminder Text, 103
TextView element, 105
ViewPager, 103

wWXY,Z
Warnings, 37
Windows
environmental variable configuration

Advanced System Settings
option, 5
JAVA_HOME, 7
PATH variable, 8
system properties, 6-7
Java Development Kit
download button, 2
execution, 3-4
installation, 1
Wrap method return value, 84

453

Learn Android Studio

Adam Gerber
Clifton Craig

Apress’

Learn Android Studio
Copyright © 2015 by Adam Gerber and Clifton Craig

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through Rights Link at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-6601-3
ISBN-13 (electronic): 978-1-4302-6602-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01/Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. Android
and all Android and Google-based marks are trademarks or registered trademarks of Google Inc. in the
United States and other countries. Apress Media LLC is not affiliated with Google Inc., and this book was
written without endorsement from Google Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Development Editor: Corbin Collins

Technical Reviewer: Jim Graham

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Sharon Wilkey

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress. com, or visit www. apress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
atwww.apress.com/9781430266013. For detailed information about how to locate your book’s source code,
g0 to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430266013
www.apress.com/source-code/

To my teaching assistants— Shashank, David,
and Varun—for their tireless work, patience, and feedback

—Adam Gerber
To Jasmine and Lauren, for
believing in their dad and for their encouraging words

—Clifton Craig

Contents

About the AUtROIS......ccuusemmmssnmmssssnmssssnsssssnssssanssssanssssansesssnnesssnnesssnnesssnnssssnnssssnnnsss xvii
About the Technical REVIEWETcucusssmemmmssssnnnsmsssssnnsmsssssssssssssssnssssssssssssssssnnnnssssans Xix
Acknowledgments........cccciuiissssmmmnmmmmmmmssssssssssnsnmmessssssssssssnsneesssssssssnnnnnnnsessssssnnnnnnns XXi
11T T1 LT T | Xxiii
Chapter 1: Introducing Android StUdi0.........ccccmmmmmmrrmssssssssssssnmnmmsssssssssssssssssesssssnns 1
Installing the Java Development Kit on WindOWS..........ccooveevenrvennnenesssessssesesessessesensens 1
Downloading the JDK 0N WINAOWS.........cceeeeererereresrereesersesessesesessssessesessssessessssessessssssssssssssessssessssesaes 2
Executing the JDK Wizard on WINAOWScccveeeriererreresererereressessssessesessesessessssessessssssssssssssessssessssssaes 3
Configuring Environmental Variables on WiNAOWSccverrererveresereseresereressessesersesessesessessssessssenas 5
Installing the Java Development Kit 0n MaACcccoeeeeererenc s 8
Downloading the JDK 0N MAC.........cccriiiriinne e ssesaessessesassssssessssssssssasssssassasssssssssssasssssssssssees 9
Executing the JDKWiIzard 0N MAC........ccccveverininenirenie s ssesaessssaessssessasssssassassssssssssssssssssssnnns 10
Configuring the JDK VErSion 0N IMACcccevrererererereressessesessssessessssessssessssesssssssessssessssessesesssssssssassens 12
Installing Android STUCIOcoueeeeeeeeeeecee e 12
Creating Your First Project: HellOWOrld...........cccoererereererrrrre e e 15
Using Android Virtual Device Managercccceeeererrersessessessessessessssssssssssssssssssssssssssees 19
Running HelloWorld on @an AVD ... s s e s s s s e 22
Running HelloWorld on an Android DEVICEec.ccvvrverrerrerrensessensesses s sssssssessssssssssseeens 23
SUMMAIY ...ttt a s e s e s R e e e e e e ne e s en e e nnennnnean 26

viii Contents

Chapter 2: Navigating Android Studiocccccccmmnisemnmmnisennnmnsssssssmnssssssssssssssnens 27

THE EAITOF ...t —— 28
EQItOr TADS ... ————————— 29
THE GUHET ettt s 30
THE MArKer Bar ..o s 30
TOOI BUHONS ..ottt 30
DEfAUIt LAYOULceeeeceeerccsec e s se e r s s s r e n e p s a e n e e ne e nnnnnnnnns 3

Navigation TOOI WINAOWS........cceeeererereresresse e e e e e sssssessessesssssssssssssnssssssssssssssssnnes 31
The Project TOOI WINUOW........cc.oceeerereecsirerisecsesise s se s 32
The Structure TOOI WINAOW ... ssseses 33
The Favorites TOOI WINUAOW ... sssssaseses 34
The TODO TOOI WINUOWccoevireriririririsisisesisesisesese s s 35
The Commander TOOI WINUOWccovrrnirininininisisisiissssese s sssssssssasaseses 35

The Main MenU Bar ... 36

THE TOOIDAN ...ttt ———————— 36

The Navigation Bar...........cccucvirsnnnsnsisss s s s e e e s sns s ssssnssssnnnns 36

The Status Bar..........cccvni s ——— 36

CommMON OPEratioNS........ccecieeriererir s sa s e ne e 37
LT L= 1 T -« P 38
USING UNAO @N0 REUODoovereeieiierieieniene et sae s sae s s sassas s sae s sassaesaesassaesaesaesassassaessnnsnns 38
LT LT [0 T] L T[S 38
Traversing Recent Navigation Operations.........ccccveeververrrereereseseseresesessessssessesessssessssassesssessssessssssaes 38
Cutting, Copying, and PaStiNgc.ccccceerrninnnnneressss e ss s se s s ss s se e ss 38

CONEEXt MENUS ...t 40

(6T 1 g (1] SRS 40

Navigating with the Keyboard ... e 41
SIBCT IN..ieeict - 41
0 41
FIIE cvreeeeeeeeeeerres e es et es e e s s s s AR AR R AR 42

Contents ix

REIAted Fil@ceeiecee s 42
Last Edit LOCALION ..o 42
B0 el 5 1= 11 1SS 42
DECIATALION ... e 43
Finding and Replacing TeXtc.ccvcrcrcrsnsersssn s sn s sne s 43
3o O 43
010 I T 3 O 43
REPIACE......e ettt E AR Re e Re R e e R e e Re e Re e eRenaeaeas 44
L T0 s T I T 11RO 44
1T ST SRN 44
Chapter 3: Programming in Android Studioccccvnnnnmmmmemmmnnnnmsssssssssnsmnsmnns 45
USiNg Code FOIAING........cceerriererierenessesssssesssse e e sss e s s e s ssssesssssssssssssssessssesssssnens 45
Performing Code COMPIELIONccceveverererecrr e sa e sa e sne e 47
CommMENtING COUE.....cceeeereeeerereerere e sr e sr e s r e n e n e n e sn e n e nnennnnas 51
USiNg Code GENEIatioN.........c.ccevsereresseresssessssessessssesssssssesssssssessssesssssssssssssssessssssssnsasens 51
0] LY 1T (0] OO SSPR 52
ETC (T T T T 53
OVEITIdE METNOUSccvevieeccrirrcecr e e s e nesp e n e s 55
TOSEING() METNO ... nn s 57
Delegate METNOUS.cocvrerecreererere e e e e s a s ne e ne e nnnnnnnnas 57
Inserting Live TEMPIALES.........cccceevrririirr e 59
MOVING YOUF COUL........ccecererereres s sn s sn s n s n s nn e nn e nnnnnnnas 61
STYIING YOUF COUE ...t sn s se s s sn s sns s sns e snsnn s 62
AULO-INAENT LINES ... sa s sa s n s e s s s s s s s e s sssssensnsnns 64
REAITANGE COURceeerrrreerererreesere s se s s s e s s e s e s s s e e e se e e s s e e e e nnnsn s 64
RefOrMAt COUE.........ueeerrrreeerirreeese e s s e s e ae e e s e e e e nan s s 65
SUITOUNAING Withcoveeccceisecri e p s nnnp s 65

R 114 1] 0P S 67

X

Contents
Chapter 4: Refactoring Code..........cccennsmmmmmmnsssnnnnmsssssssssssssssnsssssssssssssssssssssssssnnnes 69
RENAME ...ttt 71
Change SIgNAtUre.........coceeeeeeece e s sn e r e n e sn e nn e nnennenas 71
TR T L0 SR 72
MOVE....ceiecirrc e ————— 73
0]) SRS 75
Safe DEIETE ... —————— 75
EXIraCE ... ————————— 76
EXtract Variable..........cocovvnnnninnininiiiiissssss————— 76
EXtract CONSLANT ..o 76
EXIraCt FiRld.......ocoeviririniiniiiniisisiissi s 77
EXIract Parameter........c.covvnnninnninisinisssssssss s 78
EXIract MEthodcoovnninnnninniiiiii s ——— 78
Advanced Refactoringcccoceeeerereressessessesse e sse e ssessessessessessesnssnssnsssssnssnssssssssssnnnns 81
Push Members Down and Pull MEMDEIS UP ..o e sssnenes 81
Replace Inheritance with Delegation.............cccorreeerirscncrr e s 82
ENCAPSUIALE FIEIAS.......cv ettt 83
Wrap Method RETUIN VAIUE ..ot 84
Replace Constructor with Factory Method ... 85
Convert ANONYMOUS 10 INNET ..o p e senr s 86
1111 1P SRS 87
Chapter 5: Reminders Lab: Part 1...........cccoinnmmmmmnnssmnmmmssssmmmsssssssssssssnsssssssns 89
Starting @ NEW ProjECtcvververrerr ettt sn e 94
Initializing the Git REPOSITONYccceeeierrrcrr e 96
Building the User INterface..........cceeeeeerenesese s sne s sns s e e e 98
Working with the ViSUal DESIGNET ..o s 99
Editing the Layout’s RAW XMLccou o se s se s se s sessssssnens 100
Adding Visual ENNANCEMENTScouiiirererecirerresesesss e e se s s s sesnns 105
Adding IHEMS 10 LISTVIBWc.cveeeceeececceserccerer e 106

Setting the Action Bar OVerflow MenU...........cccvi s 108

This book was purchased by tanakasy@fukuoka-edu.ac.jp

Contents xi

Persisting ReMINAEIScocvvrerirrsr st sn s sn e snesnnnns 110
DAtA MOTEI ...ttt ae e s R e R e ne e e e 110
L0y (=Y o RO 112

1111 P2 7SS 119

Chapter 6: Reminders Lab: Part 2...........cccccuneemmmnnnsnmmmmmssssmmmsssssmsssssssssssssnns 121

Adding/Removing REMINUErS........cccevererrreererer e see s se s e s sassss s sassssssssassssses 121

Responding to User INteraction...........ccocceeeeeerescsssesesssssssssssessssssssssssssssessessssssssnns 124
USEI DIAl0G BOXES....cuecriuerrrerrrerreessesessessssesss e ssssessesessssessesassessssessssessesessessssessssessesessssssnsssssesssnessaneens 125

Providing Multichoice Context MENUS..........cccvcrcervrsrss s 127
Targeting Earlier SDKS........ccovreeeririneeresissssesessssse e sesssss s sssssesesssssssssssssssssssssssssssssssssssssssans 130
Adding Contextual ACtION MOTE..........coceereriererirnerererre s s s sessans 130

Implementing Add, Edit, and Deleteccoevererrnrrcrcrrre s 133
Planning a Custom Dialog BOX.......cccceerererererrererrereesersesersesesessssessesessesesssssssessssessesessssssssssssesassesssnenes 134
Moving from Plans 10 COUE..........cecrerererererereree s eeseree e raere s e re s e ree e ae e sae e saeras e saesesae e saesesaesassesassenes 135
Creating @ CuStom Dialog BOXcccceereerererererenrereesersesersesesessssersesessesesssssssessssessssessessssssessesassesssnenes 137
Adding @ CUSIOM ICON......ccuecererercre et res s e rae e sae e s rae e ae e ae e s aesa s e sae e sae e saesesaesasaesaenesaenenans 141

SUMMEAIY ... e a s s a e s e e s ae e e a e e e n e e ae e s ne e naens 142

Chapter 7: Introducing Gitcc.ccccimmnnnemmmmnmssnnnmmnssssnnmmsssssssssssssssssssssssssssnes 143

INSEAIlING Gitcoereereeirerer e r e s 143

IONOFING FIlBS.. i sae e s sa e r e s r e n e sr e sn e sn e nenn e snennenrenan 146

Lo] T T o TSRS 147

Cloning the Reference App: REMINAErs.........cccvverernincnnse s 147
FOrking and ClONING........cucvrrieienirnsissessss s s s s e ses s s e st st se s sessssssssesasssssssnnns 148
USING the GIt LOG ..cueeveeieecirerin e se s s s p s n e e e sn s sn e n e s 151
BIaNCRINGcovicieeccctre s s r e e e R e AR AR R R R e R e e 152

Developing 0n @ BranCh ... e s e e e s s snsnnnns 152
Git ComMItS aNd BranChEScccoceuiueercrerinecsisise e s ss s sesssssssnnes 159
WHEIE IS REVEIT? ...ttt et p e e 161
12T] o TSRS 165

Git Reset Changes HiSTOrY ..o sssnnns 168

xii

Contents
0Ty 72T 172
DEtached HEAU ... 174
Relative REfEIBNCES. ..ot 175
Resolving Conflicts While REDASING........cceeeverrerrrrerererererererersssersesessesesssssssessssessssessesesssssssesassessenenes 177
Ty 0] 3 184
BT 111 12 SRS 185
Chapter 8: Designing Layouts........ccccusssemnmmmsssnsnmmssssnsnsssssssssssssssssssssssssnsssssssnnnss 187
ACHIVITIES....eceeeeeereererserse s e e se e e s s e s r e sa e a e a e s r e a e a e n e nnesn e snenaenrennenrennennennnnnnnns 187
VieWS and VIEWGIOUPScoueererrerrereersersessessessessesssassssnes 188
PrEVIEW PANE.....ccvevieeerrrrsrecsesssseese s sss s s s s sa s s e s se e s s s e e s san e nnnssse e e nsnsnsnnsnnes 189
Width @N0 HEIGNEcvurveeceveceeeeesee s sses s s ssssssss s s sssss s sssessasssssssssssssssassssnssassssssssanes 191
DESIGNET MOUEoveeeeerreeerirrsre s r s esr s e s s se e s nan e nn s sne e e nensnnnnnnes 193
Frame LAYOULSccoeeerererererscreec s se s sse s s s s sas e sassss s sassessssessssssssssnssssnnenns 194
LINBAI LAYOULScoveveeecrerrssecsessssesesessssssesssssssssssssssssssssssssssssssssssssessssssssssssssssnssssssssssssssssssssssssssnsnnns 197
REIALIVE LAYOULSececceeeeeccsersnseeesssss e s esss s e s se s sesssss s e sssssssssssssssssssssssssssnssssssssnsnnes 198
L Lo Ty (T 01U 202
LISTVIBWSvvcctetccese s ss s s e s nesss st s e s nse et ssan e s ssssesnsnsnsnssnsnnes 208
Layout DesSign GUIAEIINESccceeeererereree e ree e s saesessaesessasssesassaesassassassassassnssasnnnns 215
Covering Various DiSPIAY SIZES......ccoucrererrererrerserersesersssesessssessssessesessesesssssssessssessesessssssssssssessssessenens 216
PULting I AL TOQETNEN ... e r e r e sn e nn e s 220
FragmentS ...t n s n e n e n e nn e n 228
SUMMEAY ...t a e s srer s e r e e s e a e e eae e s snnnnnnnnas 239
Chapter 9: Currencies Lab: Part 1.........cccounemmmmmmnnmnnnnssssssssnnmmssssssssssssssssssnnes 241
The Currencies SPecificationc.ccvvvrvrinrrsrcrrr s 242
Initializing the Git REPOSITONYcceveerererrrr e sa e sa s sa e snenns 246
Modifying Layout for MainACHIVItYcccoeeeeerecece e sn e 248
DEfininNg COlOrS.......uccieeeierrriresire e nn s 252
Applying Colors 10 LAYOUL..........cccceverererr e see e e e e sae s e sas e snssae e s 253

Creating and ApplYing STYIES.......cceoeeeeerecerece e snesne e 254

Contents xili

Creating the JSONPArSEr Classcceeeererreseessessesesse e sssssessssssssssssssssssssssssssssssssnns 257
Creating Splash ACLIVILYccvrerererererrre e see e sae e sr e sae e saesaesassaesaesaenens 259
Fetching Active Currency Codes as JSONccorrerniennnnsssnse e ssseenes 261
Launching MainACHIVITYccccevnerenrssernsrresssss s s 264
1111 P2 7SS 266
Chapter 10: Currencies Lab: Part 2..........ccccuemmmmnnsemmmmnsssnmmsssssssssssssssssssn 267
Define Members of MaNACHVILYccovververrenienrerser e sassaeens 267
Unpack Currency Codes from Bundle............coeeeeeeeiecenenese e sse e sse e ssssssssesssnnnns 268
Create the Options MENU..........ccoeeeeererere e sr e aesr e sa e resaesnenaesaennens 269
Implement Options Menu BERAVIOFccccoevererererere e sessasssesseseens 271
Create the spinner_closed LayouL............cccooeeereeeresiesesesesesse e ssessessessessssnessessensens 273
Bind mCurrencies t0 SPINNEIS.........ccv i saesnesnesaesnens 273
Delegate Spinner Behavior to M@inACHIVILYcccevvrerernsr s saeneens 274
Create Preferences Man@ger............ccocceeeereresesesesesessessssssssessessessssssssssssssssnssssssens 276
Find PosSition GIVEN COUE...........cceurerrerrrerrssesessssessesssessssesss s ssssssssssssssssssssesssssssssssnes 278
Extract Code from CUITENCYccveeeveererierieesessee e sesseesaessesasssssssssessessesasssssssssssassassassanes 278
Implement Shared PreferenCes..........oooveeeecececese e nnens 280
Button ClICK BENAVIONcccouieeerirciriscesssees s 283
Store the DEVEIOPET KBY.......cccceeerererereresesessesessesessessessessessessessessessesassassassassassanes 283
Fetch the DEVelOPer KEYccceceieieerrecesiesse e e sse e sse e ssesnessessesnessesnesnssnssnesnens 285
CUrrenCYCONVEIEITASKcocererererererese s sesse s ssessessessessessessessessesassssssssassnssassssssnss 286

ONPIEEXECULE() .v.vueeeerrereeresieesesessese e st s s s s ae e e e nn e e e nsnnnns 290

OINBACKGIOUNT()..uvuvrveueererseeeressnsesesessssssesessssesesessssssssessssssssesasssssssssssssssssssssssnsssssssssssssssssssssssssssaes 290

ONPOSTEXECULE() .vvveueerreueeresreeesessse e s e s s e s nne s e e nse e e e nsnnnaes 291
TR (0) (T =T (1] 291
LAUNCRET ICON.....ceieeet e s 293

1111 11 SRS 295

xiv Contents

Chapter 11: Testing and Analyzing.........ccoemsssemmmmsssssnnnmssssssssssssssssssssssssssssssssnsss 297

Creating a New Instrumentation Testc.ccccucevnrrimrninennse s 298
Define SetUp() and TearDown() MEthOGS........cccovrererirneieserinne e sssssssenens 298
Define Callback in MAINACHVITYcccuvererriniescrrre s ss s sn e 301
Define Some Test MEthOdS ... 302
Run Instrumentation TESTS.......c.cuvnnnnni—————————— 304
L) 1T 2 T OSSR 305

USING MONKEY......coeeeeeeeeceececcre e sse e ssesse s s sresae s sassnesas s e snesnssnssnesnennssnesnesnnnnnns 305

Working with Analytical TOOIS.........ccocvvrrerrernrser e 307
TS 1< AT 307
ANAlYZE DEPENUCINCIES. ... ceveereererereereraereraerersersesersesersesessessssersssessesersssassessssersssessssssssssssessssessenessenssaes 308
ANAIYZE STACKIIACEcvecereeereererereerereerere e s e res s e rae e s ae s e s e rae s aesesassesaesa s e sas e sae e saesesaesassesasnesasnenans 309

SUMMEAIY ...ttt a e s e e s ae e e re e s e a e ae e e e nennanns 312

Chapter 12: Debugging........ccccrrussnnnmmmssssnnsmsssssnsnssssssnssssssssnssssssssnssssssssnsssssssnnnss 3 13

[T oo SRS 313
LT 0o o | SRS 314
Writing t0 the ANAroid LOG.......cccvvivirirrirrirririr st se s e s e sn s sn s sn s sn st se s sa s sessassn s 316

BUG HUNT! ...ttt n e s nn e nn e n 316
Using the INteractive DEDUGQETccceerirerercresirecri s 321
Evaluating the EXPrESSION ...t ss s s e 325
USING STACK TFACESc.covreeeccrerireccsesesse e et s e se e e s s s e e e s ne e e e snennnnas 327
Exploring the Interactive Debugger’s TOOI WiNAOW.............cccerureeencrernenerirssseserese e sessseenens 330
Working with the Breakpoint BrOWSETcccoerrercrinrescsirise s sesesss e e ssssssessssns 331
Conditional BreaKpOointS........c.ouveeceereieererireescsessse e se s se s s ssenas 334

31111 P2 7SSOSR 337

Chapter 13: Gradle.......ccccuussemmmmssssnnnmmsssssnnmmssssssnssssssnsnssssssnnnssssssnnssssssnnnnsssssnnnnss 339

Gradle SYNTAXcccererererirerersersersesse e ssessessessessessesaesaesassassassaesassaesassaesaesassassnesnnnnns 340

IntelliJ Core Build SYStem ... s 342

Gradle Build CONCEPLSceeeeeerrerrerrerrerrerresse e ssessesrssnessesaesnessessesnssnesnssnesnssnssnssnesnnnnnns 342
Gradle Android STFUCIUNE ... s 342

Project DEPENAENCIES. ... 343

Contents Xv

Case Study: The Gradle Weather Project ... 344
Android Library DEpendenCiesccceererererrereerserserssssessssssssessesssssssssssssssssssssssssassanses 352
Java Library DEPENUENCIEScovererererrereereraererererersssersesessesessessssessssersessssssssssssssessssessessssssassesasaens 358
TRIrd-Party LIDFAIES......ccveeerererrereerereererereseressesseseraesessessssessssessesessssassessssesassessssssssssssessssesseesssnssaes 366
0pening Older PrOjECES. ... 368
1111 11 2SS 369
Chapter 14: More SDK TOOISccccnrrmsssmmnmmssssssnssssssssssssssssssssssssssssssssssnssssssnnnnss 371
Android DeviCe MONITOFcccouoeierenieresrnesesss s s sn s snes 3N
THrEAd MONITON ... 372
HEAP MONITON ...ttt e s e s ne e e e sn e e e 373
LV (0Tir o U (] 374
NEtWOIK STALISTICSc.ceccccceeeeee s 375
HIBIAICHY VIBWET ...ttt s s s s e nssnnnns 376
Android Monitor INtegrationcccceevererenerr s 379
11T 0 0T 0 T (0 379
Method Trace TOOL........cocvcvemmrmsmsmsmrrrsr s 380
L[0Tz L[0T 382
SCIEEN CAPLUIE......ceeeereereeereererereraerer e s ae e raesesaesesaesassesae e sae e saesessesesaesassesae e nae e saeesaerassesaenenannanaesanaens 382
Navigation EdItOr.........c.ccveiirirsrsesserses s sn e s s snssn s snssnssnesnanns 384
Designing @ USEr INTEITACEcccoeceieircrrers s s s r s 385
First Steps with the Navigation EQItor ..o s senens 385
CONNECEING ACHIVIEIES ...ccveeereeeccrre e e e se e sn e p e 387
EQItiNg MENUS ... e r e e b b e p e e se e nn e r e e 389
=] 1111 PSR 391
QUETY TOF DBVICES ...ucueuereceeeresesesese e se e e s s 391
1L 2L o 391
DOWNIOAA FilB ... 392
UPIOAA Fil ...ttt e s s s ne e e e nn e e e 392

L0 A 20T T (o 392

xvi Contents

GOOGIE ClOUA TOOISeoveeereerrerrerserrersesse e ssessessessessessessessessesssssessesassrssnssnssaesnssnsssessansans 392
Creating the HelloCloud Front ENG...........ccooiieiernnencnernccsesesee e sessssssesessssssssessssssssesssssssssnns 394
Creating the Java Endpoints Back-End MOUIE............ccveeeerereiencnirccscsrseeser e 395
CONNECHING The PIBCEScecceerireecerireeer e s e e e e 398
Deploying t0 APP ENQINE........covuieeeerireecrirse e sss s sesssss s s sssssssessssssssssssssssasnnns 403

1111 P2 7SS 406

Chapter 15: Android Wear Lab........ccucummsmsmsmsmsmsmsmsmsmsmssssssssssssssssssssssssssssssssssnss 407

Setting Up Your Wearable EnVironment............ccevvvrvnvnnessessesses s ses e ses e sessensens 407
INSTall DEVICE DIIVEIScucviriiiirssiss bbb 408
SELUP YOUF SDK TOOIS......cccrueereererererersesersesersesessesassessssessesessessssessssesssessesssssssssessssesssessenssssssssssasaens 411
Set Up @ Wear VIFtUAI DEVICEccceeerererrereerereerereresessssessesessesessessssessssessessssssssssssssessssessenssssssssssasaens 411
Set Up Your Android Wear HardWAreccceeeeerererrerersereesersesessesesessssessssessessssesessessssessssesssssssssasaens 414

Creating the MegaDroid Projectccoovvveenvernnnern s 415
Optimize for Screen TECANOIOGIEScccecrerrrereririnere et a e e sa e nas 417
Build the WAtChFACE SEIVICE........ccvviirrirerisiririsinsssi s 419
Initialize Drawable ReSources and StYIE ... 422
Manage WatCh Updates ... sn e sn s s 422
Draw the FACEccvvevinininiiiniiisis s 426

1111 112 2SS 430

Chapter 16: Customizing Android Studioc.ccccrssemmrssmsmssnsmsssmsesssnssssssnssssnnsas 431

(010 [T 4 - RSOSSN 432

Appearance, Colors, and FONTS........cccceccevieererieersirseesessse s sssesesssesssessessssssssssssassssssses 435

5] 1T SR 437

T £ R 438

File and Code TEMPIALEScccerveerierieeriirieeri s ssee s sssessssaessessessessesssesaessssaessesas 439

Menus and TOOIDAIScccereieerriese s e 441

PIUG-INS oottt n s n s 442

E3 1111 P2 7SR 444

About the Authors

Adam Gerber was among the first early beta adopters of
Android Studio, which he uses to develop Android applications
professionally and to instruct his students at the University of
Chicago where he teaches Android Application Development
and Technology Entrepreneurship among other courses. Adam
is a member of the Chicago Innovation Exchange and consults
on mobile technology and entrepreneurship. Adam holds a
Bachelors degree in Industrial Design from the University of
lllinois and a PhD with honors in Management Science from the
Conservatoire National des Arts et Métiers in Paris. Adam’s
email is gerber[-at-Juchicago.edu.

Clifton Craig has been working as a software engineer for
over 16 years. His experience covers J2ME/BlackBerry,
Android, and iOS, as well as back-end JEE-based systems.
He has worked on several high-profile projects, including the
MapQuest Gas Prices web portal, MapQuest for Mobile on
J2ME and Android, MapQuest 4 Mobile iOS, and Skype for
iOS and Android. He maintains a tech blog (cliftoncraig.com),
where he covers a variety of software topics, from Android and
Linux to iOS and OSX. He has military experience and is an
avid bicyclist, a devout Christian, and a father of two talented
little girls.

xvii

http://gerber%5b-at-%5duchicago.edu
http://cliftoncraig.com

About the Technical
Reviewer

Jim Graham received a bachelor of science in electronics with a specialty in
telecommunications from Texas A&M University in 1989. He was published in the
International Communications Association’s 1988 issue of ICA Communique (“Fast Packet
Switching: An Overview of Theory and Performance”). He has worked as an associate
network engineer in the Network Design Group at Amoco Corporation in Chicago, lllinois;
as a senior network engineer at Tybrin Corporation in Fort Walton Beach, Florida; and as an
intelligence systems analyst at both 16th Special Operations Wing Intelligence and HQ US
Air Force Special Operations Command Intelligence at Hurlburt Field, Florida. He received a
formal letter of commendation from the 16th Special Operations Wing Intelligence in 2001.

Xix

Acknowledgments

Covering a topic as vast as Android and a tool as powerful as Android Studio requires the
involvement, effort, and coordination of several individuals. We would like to acknowledge
and thank our editors and technical reviewers, Corbin Collins, Mark Powers, and Jim
Graham. In addition, we would like to acknowledge others who have made an impact either
directly or indirectly.

Throughout most of the writing process, Android Studio was in beta and thus a moving
target. Our labs and code examples had to be redone so often that I've lost track of the
number of iterations. Many thanks to my co-author, Clifton Craig, who dealt with all of this
uncertainty in stride. | would also like to thank my family and friends, particularly Mia Park,
for supporting me throughout the process which has been both challenging and rewarding.
I’d also like to thank Marilyn Meyers for always believing in me. Much thanks to the excellent
and professional team at Apress whose editorial support was critical.

—Adam Gerber

| thank Onur Cinar for introducing me to the kind people at Apress. | thank my co-author,
Adam Gerber, for always maintaining a positive attitude throughout and being an excellent
motivator. Thanks also goes to some of my closest friends, Juan Carlos Jimenez, Steve
O’Sullivan, Nizam Gok, and Yanxia Zhang for their constant support and encouragement
when things looked very uncertain. Managing a full-time career in the top tech companies
requires a constant balance between your work life and home life. Fitting a technical

book in between can be a Herculean task. During the process, many things have to be
sacrificed or neglected. | would like to extend a thank you to my managers, Will Camp
and Aravind Vijayakirthi, for tolerating my stumbles and coaching me throughout. Finally,

| acknowledge and thank my wife, Altaress, who was always there for me and our kids when
my head was plunged neck deep into my laptop.

—Clifton Craig

	Learn Android Studio
	Contents at a Glance
	Contents
	About the Authors
	About the Technical
Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Android Studio
	Installing the Java Development Kit on Windows
	Downloading the JDK on Windows
	Executing the JDK Wizard on Windows
	Configuring Environmental Variables on Windows

	Installing the Java Development Kit on Mac
	Downloading the JDK on Mac
	Executing the JDK Wizard on Mac
	Configuring the JDK Version on Mac

	Installing Android Studio
	Creating Your First Project: HelloWorld
	Using Android Virtual Device Manager
	Running HelloWorld on an AVD
	Running HelloWorld on an Android Device
	Summary

	Chapter 2: Navigating Android Studio
	The Editor
	Editor Tabs
	The Gutter
	The Marker Bar
	Tool Buttons
	Default Layout

	Navigation Tool Windows
	The Project Tool Window
	The Structure Tool Window
	The Favorites Tool Window
	The TODO Tool Window
	The Commander Tool Window

	The Main Menu Bar
	The Toolbar
	The Navigation Bar
	The Status Bar
	Common Operations
	Selecting Text
	Using Undo and Redo
	Finding Recent Files
	Traversing Recent Navigation Operations
	Cutting, Copying, and Pasting

	Context Menus
	Getting Help
	Navigating with the Keyboard
	Select In
	Class
	File
	Line
	Related File
	Last Edit Location
	Type Hierarchy
	Declaration

	Finding and Replacing Text
	Find
	Find in Path
	Replace
	Replace in Path

	Summary

	Chapter 3: Programming in Android Studio
	Using Code Folding
	Performing Code Completion
	Commenting Code
	Using Code Generation
	Constructors
	Getters/Setters
	Override Methods
	toString( ) Method
	Delegate Methods

	Inserting Live Templates
	Moving Your Code
	Styling Your Code
	Auto-Indent Lines
	Rearrange Code
	Reformat Code
	Surrounding With

	Summary

	Chapter 4: Refactoring Code
	Rename
	Change Signature
	Type Migration
	Move
	Copy
	Safe Delete
	Extract
	Extract Variable
	Extract Constant
	Extract Field
	Extract Parameter
	Extract Method

	Advanced Refactoring
	Push Members Down and Pull Members Up
	Replace Inheritance with Delegation
	Encapsulate Fields
	Wrap Method Return Value
	Replace Constructor with Factory Method
	Convert Anonymous to Inner

	Summary

	Chapter 5: Reminders Lab: Part 1
	Starting a New Project
	Initializing the Git Repository
	Building the User Interface
	Working with the Visual Designer
	Editing the Layout’s Raw XML
	Adding Visual Enhancements
	Adding Items to ListView
	Setting the Action Bar Overflow Menu

	Persisting Reminders
	Data Model
	SQLite API

	Summary

	Chapter 6: Reminders Lab: Part 2
	Adding/Removing Reminders
	Responding to User Interaction
	User Dialog Boxes

	Providing Multichoice Context Menus
	Targeting Earlier SDKs
	Adding Contextual Action Mode

	Implementing Add, Edit, and Delete
	Planning a Custom Dialog Box
	Moving from Plans to Code
	Creating a Custom Dialog Box
	Adding a Custom Icon

	Summary

	Chapter 7: Introducing Git
	Installing Git
	Ignoring Files
	Adding Files
	Cloning the Reference App: Reminders
	Forking and Cloning
	Using the Git Log
	Branching

	Developing on a Branch
	Git Commits and Branches
	Where is Revert?
	Merging
	Git Reset Changes History
	Git Rebase
	Detached Head
	Relative References
	Resolving Conflicts While Rebasing
	Git Remotes
	Pull vs. Push Model

	Summary

	Chapter 8: Designing Layouts
	Activities
	Views and ViewGroups
	Preview Pane
	Width and Height
	Designer Mode
	Frame Layouts
	Linear Layouts
	Relative Layouts
	Nested Layouts
	List Views

	Layout Design Guidelines
	Covering Various Display Sizes
	Putting It All Together

	Fragments
	Summary

	Chapter 9: Currencies Lab: Part 1
	The Currencies Specification
	Initializing the Git Repository
	Modifying Layout for MainActivity
	Defining Colors
	Applying Colors to Layout
	Creating and Applying Styles
	Creating the JSONParser Class
	Creating Splash Activity
	Fetching Active Currency Codes as JSON
	Launching MainActivity
	Summary

	Chapter 10: Currencies Lab: Part 2
	Define Members of MainActivity
	Unpack Currency Codes from Bundle
	Create the Options Menu
	Implement Options Menu Behavior
	Create the spinner_closed Layout
	Bind mCurrencies to Spinners
	Delegate Spinner Behavior to MainActivity
	Create Preferences Manager
	Find Position Given Code
	Extract Code from Currency
	Implement Shared Preferences
	Button Click Behavior
	Store the Developer Key
	Fetch the Developer Key
	CurrencyConverterTask
	onPreExecute( )
	doInBackground( )
	onPostExecute( )

	Button Selector
	Launcher Icon
	Summary

	Chapter 11: Testing and Analyzing
	Creating a New Instrumentation Test
	Define SetUp( ) and TearDown( ) Methods
	Define Callback in MainActivity
	Define Some Test Methods
	Run Instrumentation Tests
	Fix the Bug

	Using Monkey
	Working with Analytical Tools
	Inspect Code
	Analyze Dependencies
	Analyze Stacktrace

	Summary

	Chapter 12: Debugging
	Logging
	Using Logcat
	Writing to the Android Log

	Bug Hunt!
	Using the Interactive Debugger
	Evaluating the Expression
	Using Stack Traces
	Exploring the Interactive Debugger’s Tool Window
	Working with the Breakpoint Browser
	Conditional Breakpoints

	Summary

	Chapter 13: Gradle
	Gradle Syntax
	IntelliJ Core Build System
	Gradle Build Concepts
	Gradle Android Structure
	Project Dependencies

	Case Study: The Gradle Weather Project
	Listing 13-2. Settings.gradle
	Android Library Dependencies
	Java Library Dependencies
	Third-Party Libraries

	Opening Older Projects
	Summary

	Chapter 14: More SDK Tools
	Android Device Monitor
	Thread Monitor
	Heap Monitor
	Allocation Tracker
	Network Statistics
	Hierarchy Viewer

	Android Monitor Integration
	Memory Monitor
	Method Trace Tool
	Allocation Tracker
	Screen Capture

	Navigation Editor
	Designing a User Interface
	First Steps with the Navigation Editor
	Connecting Activities
	Editing Menus

	Terminal
	Query for Devices
	Install APK
	Download File
	Upload File
	Port Forward

	Google Cloud Tools
	Creating the HelloCloud Front End
	Creating the Java Endpoints Back-End Module
	Connecting the Pieces
	Deploying to App Engine

	Summary

	Chapter 15: Android Wear Lab
	Setting Up Your Wearable Environment
	Install Device Drivers
	Set Up Your SDK Tools
	Set Up a Wear Virtual Device
	Set Up Your Android Wear Hardware
	Enable Developer Mode
	Use Bluetooth Debugging

	Creating the MegaDroid Project
	Optimize for Screen Technologies
	Build the WatchFace Service
	Register the Service

	Initialize Drawable Resources and Style
	Manage Watch Updates
	Draw the Face

	Summary

	Chapter 16: Customizing Android Studio
	Code Style
	Appearance, Colors, and Fonts
	Keymap
	Macros
	File and Code Templates
	Menus and Toolbars
	Plug-ins
	Summary

	Index

