
1

Table of Contents:

Using Android Studio 1

Installing Android Studio 1

Installing IntelliJ IDEA Community Edition 3

Downloading My Book's Examples 4

Launching Android Studio and Importing an Android Project 4

Launching IDEA and Importing a Desktop Java Project 9

Creating Your Own App 15

Embellishing Your App 17

Using Android Studio

Welcome to the "emergency" chapter for readers of my two books --

 Java Programming for Android Developers For Dummies

 Android Application Development All-in-One For Dummies

I'm currently working on a second edition of the All-in-One book, but you probably don't want to wait

for that edition to become available. In the meantime, note that the stewards of Android have changed

their http://developer.android.com/sdk/index.html page. They now support Android Studio as the

official development platform for Android apps.

TIP: You can still use Eclipse if you decide to do so, but it's clear to everyone that Android Studio is "in"

and Eclipse with Android tooling is very "yesterday." If you want to use Eclipse, visit eclipse.org and get

Eclipse for Java Developers. After installing Eclipse for Java Developers, follow the instructions at

http://developer.android.com/sdk/installing/installing-adt.html to add the ADT (Android Developer

Tools) to Eclipse.

Anyway, I've pasted together some instructions on running my book's examples with Android Studio.

Please email any questions that you have to me at mailto:android@allmycode.com.

Installing Android Studio

1. Visit http://developer.android.com/sdk/index.html.

2. Click the download button for your operating system (Windows, Mac, or Linux).

3. (On a Mac :) Double-click the downloaded .dmg file's icon. In the resulting Finder window,

drag Android Studio (or Android Studio.app) to the Applications folder.

(On Windows :) Double-clicking the .exe file's icon. And follow the steps in the resulting

wizard.

Here are some of the wizard steps that I see when I install Android Studio on Windows:

http://developer.android.com/sdk/index.html
http://eclipse.org/
http://developer.android.com/sdk/installing/installing-adt.html
mailto:android@allmycode.com
http://developer.android.com/sdk/index.html

2

(I had no special reason for changing the

memory value from Recommended to

Custom. I was just goofing around with the

settings.)

3

By default, when you install Android Studio, you also get an Android virtual device (AVD), so you

can skip any instructions in the book for adding an AVD.

Installing IntelliJ IDEA Community Edition

My Java Programming for Android Developers book contains both Android apps and plain old desktop

Java programs. I've heard rumors that you can run desktop Java programs in Android Studio. But doing

so means applying several workarounds, and that can be confusing. So for the desktop Java programs, I

recommend installing Android Studio's parent IDE; namely, IntelliJ IDEA from JetBrains.

Remember: If you have the All-in-One book, you don't have to install IntelliJ IDEA.

1. Visit https://www.jetbrains.com/.

2. Look for the download button for IntelliJ IDEA Community Edition.

3. Download and install the software.

The steps for doing the download should be similar to the steps given above for Android Studio.

After installing Android Studio and IntelliJ IDEA, follow these steps.

https://www.jetbrains.com/

4

Downloading My Book's Examples

1. Visit http://allmycode.com/android (for the All-in-One book) or

http://allmycode.com/Java4Android (for the Java Programming for Android book).

2. On either page, click the link to download the code examples for Android Studio.

3. When the download is finished, double-click the downloaded file's icon to uncompress the

file.

In case you're wondering, other words for "uncompressing" are "unzipping" and "expanding."

4. Note the location of the uncompressed folder on your computer's hard drive.

Launching Android Studio and Importing an Android

Project

REMEMBER: For an app that involves two different projects (projects such as 03-01-05 and 03-01-

05Other), you must get Android Studio to run both projects (on the same emulator or the same Android

device).

1. Double-click the Android Studio app's icon.

A Welcome screen appears.

http://allmycode.com/android
http://allmycode.com/Java4Android

5

2. In the Welcome screen, select Open and Existing Android Studio Project.

An Open Project dialog box appears.

3. Navigate to the folder containing one of my Android apps.

REMEMBER: In the All-in-One book, the first Android app is in Listing 3-1 in Book I. (So the

folder's name is 01-03-01.). In the Java Programming for Android Developers book, the first

Android app is in Listing 4-1, not Listing 3-1. (So the folder's name is 04-01.)

4. Select the build.gradle file inside that folder.

5. Click OK.

As a result, Android Studio's main window opens. The project's files appear on the left side (in

the Project tool window).

6. To see my app's Java code, go to the Project tool window, and double-click the

app/Java/com.example.myfirstandroidapp/MainActivity branch.

6

When you do, my Java code appears on the right side (in Android Studio's editor).

(The name immediately under the Java branch might not be com.example.myfirstandroidapp ,

and the activity's name might not be MainActivity. One way or another, look for a branch with

the name Activity in it.)

7. To see my app's layout, go to the Project tool window, and double-click the

app/res/layout/activity_main.xml (or maybe app/res/layout/main.xml) branch.

When you do, the Designer tool appears on the right side of Android Studio's main window. The

Designer tool is in one of two modes.

 In Design mode, you see the Palette, a preview screen, the Component tree, and a

Properties pane.

 In Text mode, you see XML code and a preview screen.

7

Use the tabs in the lower left corner of the Designer tool to switch between Design mode and

Text mode.

8. To run the project, go to Android Studio's main menu and click RunRun 'app'.

As a result, you see a Choose Device dialog box.

REMEMBER: For an app that involves two different projects (projects such as 03-01-05 and 03-01-

05Other), you must get Android Studio to run both projects (on the same emulator or the same Android

device). One of the projects might not have any main activities. In that case, you might see an Edit

Configuration dialog box. In that case, select the Do Not Launch Activity option, and then click the Run

button.

8

9. If you've already started an emulator running, select Choose a Running Device. If you haven't

already started an emulator running, select Launch Emulator.

In the Android Virtual Device dropdown list, select an AVD whose level number is at least as high

is the app's minimum API level. (If you're not sure about this, just give any option in the

dropdown list a try. You can read more about this issue in either book.)

TIP: For a better emulator experience, try the third-party Genymotion emulator. You can also try

running apps on a real Android device (one that's connected to your development computer via

USB.) For instructions on running apps on real devices, check out the appropriate sections in one

of my books.

10. Click OK.

After a painfully long wait, an emulator window appears on your development computer's

screen. The emulator window's screen looks like an Android phone when you turn it on.

Eventually, you see the phone's lock screen.

11. With your mouse, do whatever you have to do in order to unlock the emulator screen.

(Usually, a simple swipe does the trick.)

https://www.genymotion.com/

9

Eventually, the app appears on your emulator's screen.

Launching IDEA and Importing a Desktop Java

Project

Remember: If you have the All-in-One book, you can skip these Desktop Java instructions.

1. Double-click the IntelliJ IDEA app's icon.

A Welcome screen appears.

2. In the Welcome screen, select Import Project.

A Select File or Directory to Import dialog box appears.

10

3. Navigate to the folder containing one of my desktop Java apps.

In the Java Programming for Android Developers book, the first desktop Java app is in Listing 3-1

(so the folder's name is 03-01).

I put desktop Java apps inside a folder named Java4Android_IDEAJan2014, and put Android apps

inside a folder named Java4Android_AndroidStudioJan2015. If you're in doubt, you can usually

tell which folders contain Android projects and which folders contain desktop Java projects by

looking for a res subfolder.

 The folders that contain res subfolders are Android projects.

Open these projects in Android Studio.

 The folders that don't contain res subfolders are desktop Java projects.

Open these projects in IntelliJ IDEA.

4. Click OK.

As a result, you see several more dialog boxes. You can accept the defaults in each of these

boxes.

11

12

13

 If you see Nothing to Show

on the left side...

14

Eventually, IDEA's main window opens. The project's files appear on the left side (in the Project

tool window).

5. To see my program's Java code, go to the Project tool window, and double-click the

03-01/src/MortgageWindow.java/MortgageWindow branch.

When you do, my Java code appears on the right side (in IDEA's editor).

(If the project that you've opened isn't 03-01, the name immediately under the src branch might

not be MortgageWindow.java, and the name immediately under the whatever.Java branch

won't be MortgageWindow. Adjust your mouse clicks accordingly.)

6. To run the project, go to IDEA's main menu and click RunRun 'MortgageWindow'.

As a result, the app starts running on your computer's screen.

15

Creating Your Own App

Here's how you create an app:

1. Launch Android Studio.

When you do, you'll see either Android Studio's main window or the Welcome screen.

2. If you see the main window, click FileNew Project. If you see the Welcome screen, click Start

a New Android Studio Project.

A New Project dialog box appears.

3. Fill in the fields in the New Project dialog box, and then click Next.

If you're just practicing (that is, if you're not creating an app for distribution to the public), you

can accept all the defaults.

For public distribution, you want a catchy Application Name.

You also want a package name that uniquely identifies you and this app. If you have a domain

name, start by reversing the domain name and then adding a word to identify this particular

app. In the figure in Step 2, the domain name is example.com, and the app's identifying info is

myapplication.

16

When you press Next, the next page of the New Project dialog box appears.

4. For a practice app, accept the defaults (Phone and Tablet with Minimum SDK API 15), and

then click Next.

For advice on Minimum SDKs and such things, see the appropriate sections of either book.

When you press Next, yet another page of the New Project dialog box appears.

5. For a practice app, accept the default (Blank Activity), and then click Next.

You guessed it! When you press Next, another page of the New Project dialog box appears.

17

Accept the defaults and click Finish! As a result, the new application appears in Android Studio's

main window.

Embellishing Your App

In this section, you add functionality to the basic Android app:

1. Follow the steps in the previous section (entitled "Creating Your Own App").

As a result, you see the new app's Designer tool with the Palette and the big preview screen.

(Refer to the final figure in the "Creating Your Own App" section.)

18

2. If you don't see the Designer tool, navigate to the app/res/layout branch on the left side of

Android Studio's main window, and double-click the activity_main.xml item.

Remember: The Designer tool has two modes: the Design mode and the Text mode. The mode

that you want is the Design mode. To switch between modes click the tabs in the lower left

corner of the Designer tool.

3. In the Widgets group of the Palette, click the CheckBox item.

4. Click anywhere inside the preview screen.

As a result, a CheckBox item appears in your preview screen.

TIP: You don't have to do two clicks, as in Steps 3 and 4. Instead, you can drag directly from the

CheckBox item in the palette to the preview screen.

5. Repeat Steps 3 and 4 for another CheckBox item.

6. Repeat Steps 3 and 4 for Button item.

7. Repeat Steps 3 and 4 for Plain TextView item.

Here's what the preview screen looks like now.

19

8. In the preview screen, double-click the first CheckBox.

A Properties popup appears.

9. In the Properties popup's Text field, type Pepperoni. Then press Enter.

As a result, the checkbox's label changes to Pepperoni.

10. Repeat Steps 8 and 9 for the second checkbox. Change its label to Extra Cheese.

11. Repeat Steps 8 and 9 for the button. Change its label to Show.

12. Repeat Steps 8 and 9 for the Plain TextView. Change its text to the word Plain.

(In case you're wondering, the fact that this TextView item is a Plain TextView has nothing to do

with typing the word Plain in this step. A Plain TextVIew isn't necessarily associated with a

plain pizza.)

When you've finished Step 12, the preview screen looks like this:

20

13. In the preview screen, select the button.

14. In the Properties pane (in the lower-right part of the main window) look for the onClick item.

15. Type onButtonClick , and then click your mouse in a neutral spot outside of the Properties

pane.

16. In Android Studio's main menu, select FileSave All.

Better Save than sorry!

17. In the Project tool window, double-click the

app/java/com.example.myapplication/MainActivity branch.

21

The MainActivity class's code appears in Android Studio's editor.

WARNING: Instead of

 public class MainActivity extends ActionBarActivity

in the editor's code, you might see

 public class MainActivity extends Activity

You might also see something like

 import android.support.v7.app.ActionBarActivity;

near the top of the code. There are bound to be some other differences between what your

computer shows you and what I describe in these notes and in the book. For now, you can

ignore these differences.

18. Modify the code by adding several lines, as is shown below.

The lines that you add are set in green boldface type. (If see extends

ActionBarActivity instead of extends Activity, you can change it to extends

Activity or leave it as it is. Either way, the app will work.)

package com.example.myapplication;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

22

import android.view.MenuItem;

import android.view.View;

import android.widget.CheckBox;

import android.widget.TextView;

public class MainActivity extends Activity {

 TextView textView;

 CheckBox pepBox, cheeseBox;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 pepBox = (CheckBox) findViewById(R.id.checkBox);

 cheeseBox = (CheckBox) findViewById(R.id.checkBox2);

 textView = (TextView) findViewById(R.id.textView2);

 }

 public void onButtonClick(View view) {

 StringBuilder str = new StringBuilder("");

 if (pepBox.isChecked()) {

 str.append("Pepperoni" + " ");

 }

 if (cheeseBox.isChecked()) {

 str.append("Extra cheese");

 }

 if (str.length() == 0) {

 str.append("Plain");

 }

 textView.setText(str);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.action_settings) {

 return true;

 }

23

 return super.onOptionsItemSelected(item);

 }

}

TIP: When you type the word TextView or the word CheckBox, the word's typeface might

be red in Android Studio's editor. If so, it might mean that you haven't yet typed in the

appropriate import declaration near the top of the editor. If you want to avoid typing the

import declaration, click your mouse on the red word, and then press Alt+Enter. With any

luck, Android Studio will add the import declaration automatically for you.

19. In Android Studio's main menu, select FileSave All.

20. In Android Studio's main menu, select RunRun 'app'.

Heed all the advice about running an app that I provided in the "Launching Android Studio and

Importing an Android Project" section.

A successful run of the app looks like this:

That's it. If you have any comments about this document, or if you have any other questions about

Android Studio or about any of the examples in my book, email me at android@allmycode.com. You can

also tweet me at @allmycode or send a Facebook message to /allmycode.

Happy coding!

mailto:android@allmycode.com
http://twitter.com/allmycode
http://facebook.com/allmycode

	Using_Android_Studio
	Installng_Android_Studio
	Installng_IntelliJ_IDEA_Community_Ed
	Downloading_My_Books_Examples
	Launching_Android_Studio
	Launching_IDEA
	Creating_Your_Own_App
	Embellishing_Your_App

