Floyd-Warshall Algorithm

https://www.programiz.com/dsa/floyd-warshall-algorithm




Floyd-Warshall Algorithm

* Floyd-Warshall Algorithm is an algorithm for finding the
shortest path between all the pairs of vertices in a weighted

graph.
* This algorithm works for both the directed and undirected
weighted graphs.

* But, it does not work for the graphs with negative cycles
(where the sum of the edges in a cycle is negative).



Floyd-Warshall Algorithm

* A weighted graph is a graph in which each edge has a
numerical value associated with it.

* Floyd-Warhshall algorithm is also called as Floyd's algorithm,
Roy-Floyd algorithm, Roy-Warshall algorithm or WFI
algorithm.

* This algorithm follows the dynamic programming approach
to find the shortest paths.




How Floyd-Warshall Algorithm Works?

* Let the given graph be:

* Follow the steps below to find the shortest path between all the pairs of
vertices.



Step 1:

Create a matrix A° of dimension n*n where n is the
number of vertices.

The row and the column are indexed as i and j
respectively.

i and j are the vertices of the graph.

Each cell A[i][j] is filled with the distance from the ith
vertex to the jt vertex.

If there is no path from it" vertex to jth vertex, the cell
is left as infinity.

AO

8 N O

8
8

B O WN

H e

8

o



Step 2:

5
* Now, create a matrix A using matrix A°,
* The elements in the first column and the first row are left as they
are. Z 3 2
4
* The remaining cells are filled in the following way.
* Let k be the intermediate vertex in the shortest path from source 1

to destination.

In this step, k is the first vertex.
Ali][j] is filled with (A[il[k] + A[k][]])
if (A[i][j] > Alil[k] + A[k][j]).

* That is, if the direct distance from the source to the destination is
greater than the path through the vertex k, then the cell is filled
with Ali][k] + A[K][j].




Step 2:

* In this step, k is vertex 1. We cacluate the
distance from source vertex to destination
vertex through this vertex k.

For example:

* For A[2, 4], the direct distance from
vertex 2 to 4 is 4 and the sum of the
distance from vertex 2 to 4 through vertex
(i.e. from vertex 2 to 1 and from vertex 1
to4)is7.

* Since 4 <7, AY[2, 4] is filled with 4.

Al

N O

o Www

8 w

TS

N O

= O W~

N © Vv 8§ w

© 0O A~ Ui



Step 3:
* In a similar way, A? is created using A®.

* The elements in the second column and the
second row are left as they are.

* In this step, k is the second vertex (i.e. vertex 2).

* The remaining steps are the same as in step 2.

A2

o~

= O Ww»

W N OF

8
8

= O WM

N O VvV vV

©C U A~ Uis



Step 4.

 Similarly, A3 and A% is also created.

A4

3
oo
9
0
2

4

i W N Or

i W N Or

W = O WM

W = O WM

N O VvV Vw

N O O Nw

A% gives the shortest
path between each pair
of vertices.



Floyd-Warshall Algorithm

n = no of vertices
A = matrix of dimension n*n
fork=1ton
fori=1ton
forj=1ton
AX[i, j1 = min (AU, j1, AU, k] + A¥YK, j])

return A



Floyd Warshall Algorithm Complexity

Time Complexity

* There are three loops.

* Each loop has constant complexities.

* So, the time complexity of the Floyd-Warshall algorithm is O(n3).

Space Complexity
* The space complexity of the Floyd-Warshall algorithm is O(n?).



Floyd Warshall Algorithm Applications

* To find the shortest path is a directed graph

* To find the transitive closure of directed graphs

* To find the Inversion of real matrices

* For testing whether an undirected graph is bipartite



// Floyd-Warshall Algorithm in C
#include <stdio.h>

// defining the number of vertices
#define nV 4

#define INF 999

void printMatrix(int A[][nV]);

void floydWarshall(int graph[][nV]){
int A[nV][nV], i, ]}, k;
for (i=0;i<nV,i++)
for (j=0;j<nV;j++)
Alil[j] = graph[i][jl;
for (k =0; k< nV; k++) {
for(i=0;i<nV;i++) {
for(j=0;j<nV;j++) {
if (ALIK] + ALK][T < ALIGD)
Ali][j] = ALIIK] + ALKILT;
}
}
}
printMatrix(A);
}

void printMatrix(int A[][nV]){
for (inti=0;i<nV,i++) {
for(intj=0;j<nV;j++) {
if (A[i][j] == INF)
printf("%4s", "INF");
else
printf("%4d", A[i][j]);
}
printf("\n");
}
}

int main(){

int graph[nV][nV] = {{0, 3, INF, 5},

{2, 0, INF, 4},
{INF, 1, 0, INF},
{INF, INF, 2, 0}};
floydWarshall(graph);
}



