
Adversarial Search
(Game)

https://www.javatpoint.com/ai-adversarial-search

https://www.javatpoint.com/mini-max-algorithm-in-ai

https://www.javatpoint.com/ai-alpha-beta-pruning



Adversarial Search

Adversarial search is a search, where we examine the problem which 
arises when we try to plan ahead of the world and other agents are 

planning against us.



Introduction



Introduction

• In previous topics, we have studied the search strategies which are only associated with 
a single agent that aims to find the solution which often expressed in the form of a 
sequence of actions.

• But, there might be some situations where more than one agent is searching for the 
solution in the same search space, and this situation usually occurs in game playing.

• The environment with more than one agent is termed as multi-agent environment, in 
which each agent is an opponent of other agent and playing against each other. Each 
agent needs to consider the action of other agent and effect of that action on their 
performance.

• So, Searches in which two or more players with conflicting goals are trying to explore 
the same search space for the solution, are called adversarial searches, often known as 
Games.

• Games are modeled as a Search problem and heuristic evaluation function, and these are 
the two main factors which help to model and solve games in AI.



Types of Games in AI
1. Perfect information: A game with the perfect information is 

that in which agents can look into the complete board. 
Agents have all the information about the game, and they 
can see each other moves also. Examples are Chess, 
Checkers, Go, etc.

2. Imperfect information: If in a game agents do not have all 
information about the game and not aware with what's 
going on, such type of games are called the game with 
imperfect information, such as tic-tac-toe, Battleship, blind, 
Bridge, etc.

3. Deterministic games: Deterministic games are those games 
which follow a strict pattern and set of rules for the games, 
and there is no randomness associated with them. 
Examples are chess, Checkers, Go, tic-tac-toe, etc.

4. Non-deterministic games: Non-deterministic are those 
games which have various unpredictable events and has a 
factor of chance or luck. This factor of chance or luck is 
introduced by either dice or cards. These are random, and 
each action response is not fixed. Such games are also 
called as stochastic games.
Example: Backgammon, Monopoly, Poker, etc.



Note: In this topic, we will discuss deterministic games, fully observable 
environment, zero-sum, and where each agent acts alternatively.



Zero-Sum Game

• Zero-sum games are adversarial search which involves pure 
competition.

• In Zero-sum game each agent's gain or loss of utility is exactly 
balanced by the losses or gains of utility of another agent.

• One player of the game try to maximize one single value, while other 
player tries to minimize it.

• Each move by one player in the game is called as ply.

• Chess and tic-tac-toe are examples of a Zero-sum game.



Zero-sum game: Embedded thinking

• The Zero-sum game involved embedded thinking in which one agent 
or player is trying to figure out:
• What to do.

• How to decide the move

• Needs to think about his opponent as well

• The opponent also thinks what to do

• Each of the players is trying to find out the response of his opponent 
to their actions. This requires embedded thinking or backward 
reasoning to solve the game problems in AI.



Formalization of the problem:
• A game can be defined as a type of search in AI which can be 

formalized of the following elements:
• Initial state: It specifies how the game is set up at the start.

• Player(s): It specifies which player has moved in the state space.

• Action(s): It returns the set of legal moves in state space.

• Result(s, a): It is the transition model, which specifies the result of moves in 
the state space.

• Terminal-Test(s): Terminal test is true if the game is over, else it is false at any 
case. The state where the game ends is called terminal states.

• Utility(s, p): A utility function gives the final numeric value for a game that 
ends in terminal states s for player p. It is also called payoff function. For 
Chess, the outcomes are a win, loss, or draw and its payoff values are +1, 0, ½. 
And for tic-tac-toe, utility values are +1, -1, and 0.



Game tree:

• A game tree is a tree where nodes of the tree are the game states and 
Edges of the tree are the moves by players. 

• Game tree involves initial state, actions function, and result Function.

• Example: Tic-Tac-Toe game tree:

• The following figure is showing part of the game-tree for tic-tac-toe 
game. Following are some key points of the game:
• There are two players MAX and MIN.

• Players have an alternate turn and start with MAX.

• MAX maximizes the result of the game tree

• MIN minimizes the result.



 From the initial state, MAX has 9 possible 
moves as he starts first. MAX place x and MIN 
place o, and both player plays alternatively until 
we reach a leaf node where one player has 
three in a row or all squares are filled.

 Both players will compute each node, minimax, 
the minimax value which is the best achievable 
utility against an optimal adversary.

 Suppose both the players are well aware of the 
tic-tac-toe and playing the best play. Each 
player is doing his best to prevent another one 
from winning. MIN is acting against Max in the 
game.

 So in the game tree, we have a layer of Max, a 
layer of MIN, and each layer is called as Ply. 
Max place x, then MIN puts o to prevent Max 
from winning, and this game continues until the 
terminal node.

 In this either MIN wins, MAX wins, or it's a 
draw. This game-tree is the whole search space 
of possibilities that MIN and MAX are playing 
tic-tac-toe and taking turns alternately.



• Hence adversarial Search for the minimax procedure works as follows:
• It aims to find the optimal strategy for MAX to win the game.
• It follows the approach of Depth-first search.
• In the game tree, optimal leaf node could appear at any depth of the tree.
• Propagate the minimax values up to the tree until the terminal node 

discovered.

• In a given game tree, the optimal strategy can be determined from 
the minimax value of each node, which can be written as 
MINIMAX(n). 

• MAX prefer to move to a state of maximum value and MIN prefer to 
move to a state of minimum value then:



Mini-Max Algorithm



Mini-Max Algorithm in Artificial Intelligence
• Mini-max algorithm is a recursive or backtracking algorithm which is used in decision-

making and game theory. It provides an optimal move for the player assuming that 
opponent is also playing optimally.

• Mini-Max algorithm uses recursion to search through the game-tree.

• Min-Max algorithm is mostly used for game playing in AI. Such as Chess, Checkers, tic-
tac-toe, go, and various tow-players game. 

• This Algorithm computes the minimax decision for the current state.

• In this algorithm two players play the game, one is called MAX and other is called MIN.

• Both the players fight it as the opponent player gets the minimum benefit while they get 
the maximum benefit.

• Both Players of the game are opponent of each other, where MAX will select the 
maximized value and MIN will select the minimized value.

• The minimax algorithm performs a depth-first search algorithm for the exploration of the 
complete game tree.

• The minimax algorithm proceeds all the way down to the terminal node of the tree, then 
backtrack the tree as the recursion.



Working of Min-Max Algorithm:

• Below we have taken an example of game-tree which is representing the 
two-player game.

• In this example, there are two players one is called Maximizer and other is 
called Minimizer.

• Maximizer will try to get the Maximum possible score, and Minimizer will 
try to get the minimum possible score.

• This algorithm applies DFS, so in this game-tree, we have to go all the way 
through the leaves to reach the terminal nodes.

• At the terminal node, the terminal values are given so we will compare 
those value and backtrack the tree until the initial state occurs.



The main steps involved in solving the two-player game tree:

Step-1: 

• In the first step, the algorithm 
generates the entire game-tree and 
apply the utility function to get the 
utility values for the terminal states. 

• In the below tree diagram, let's take 
A is the initial state of the tree. 

• Suppose :
• maximizer takes first turn which has 

worst-case initial value =- infinity, and 
• minimizer will take next turn which has 

worst-case initial value = +infinity.



• Step 2:

• Now, first we find the utilities value for the 
Maximizer, its initial value is -∞, so we will 
compare each value in terminal state with 
initial value of Maximizer and determines the 
higher nodes values. It will find the maximum 
among the all.

• For node D max(-1, -∞) => max(-1,4)  = 4

• For Node E max(2, -∞) => max(2, 6)   = 6

• For Node F max(-3, -∞) => max(-3,-5) = -3

• For node G max(0, -∞) => max(0, 7) = 7



Step 3:

In the next step, it's a turn for 
minimizer, so it will compare all 
nodes value with +∞, and will 
find the 3rd layer node values.

• For node B= min(4,6) = 4

• For node C= min (-3, 7) = -3



Step 4:

Now it's a turn for Maximizer, 
and it will again choose the 
maximum of all nodes value 
and find the maximum value 
for the root node. 

In this game tree, there are 
only 4 layers, hence we reach 
immediately to the root node, 
but in real games, there will be 
more than 4 layers.

• For node A max(4, -3)= 4

That was the complete 
workflow of the minimax two 
player game.



Properties of Mini-Max algorithm:

• Complete: Min-Max algorithm is Complete. It will definitely find a 
solution (if exist), in the finite search tree.

• Optimal: Min-Max algorithm is optimal if both opponents are playing 
optimally.

• Time complexity: As it performs DFS for the game-tree, so the time 
complexity of Min-Max algorithm is O(bm), where b is branching 
factor of the game-tree, and m is the maximum depth of the tree.

• Space Complexity: Space complexity of Mini-max algorithm is also 
similar to DFS which is O(bm).



Limitation of the minimax Algorithm:

• The main drawback of the minimax algorithm is that it gets really slow 
for complex games such as Chess, go, etc. 

• This type of games has a huge branching factor, and the player has 
lots of choices to decide. 

• This limitation of the minimax algorithm can be improved from alpha-
beta pruning which we have discussed in the next topic.



Alpha-Beta Pruning



Alpha-Beta Pruning

• Alpha-beta pruning is a modified version of the minimax algorithm. 
• It is an optimization technique for the minimax algorithm.
• As we have seen in the minimax search algorithm that the number of game 

states it has to examine are exponential in depth of the tree. 
• Since we cannot eliminate the exponent, but we can cut it to half. 
• Hence there is a technique by which without checking each node of the 

game tree we can compute the correct minimax decision, and this 
technique is called pruning. 
• This involves two threshold parameter Alpha and beta for future 

expansion, so it is called alpha-beta pruning. 
• It is also called as Alpha-Beta Algorithm.
• Alpha-beta pruning can be applied at any depth of a tree, and sometimes it 

not only prune the tree leaves but also entire sub-tree.



Alpha-Beta Pruning

• The two-parameter can be defined as:
• Alpha: The best (highest-value) choice we have found so far at any point along 

the path of Maximizer. The initial value of alpha is -∞.

• Beta: The best (lowest-value) choice we have found so far at any point along 
the path of Minimizer. The ini�al value of beta is +∞.

• The Alpha-beta pruning to a standard minimax algorithm returns the 
same move as the standard algorithm does, but it removes all the 
nodes which are not really affecting the final decision but making 
algorithm slow. 

• Hence by pruning these nodes, it makes the algorithm fast.



Condition for Alpha-beta pruning
• The main condition which required for alpha-beta pruning is: α>=β

Key points about alpha-beta pruning
• The Max player will only update the value of alpha.
• The Min player will only update the value of beta.
• While backtracking the tree, the node values will be passed to upper 

nodes instead of values of alpha and beta.
• We will only pass the alpha, beta values to the child nodes.



Working of Alpha-Beta Pruning

Let's take an example of two-player 
search tree to understand the 
working of Alpha-beta pruning

Step 1: 

• At the first step the, Max player will 
start first move from node A where 
α= -∞ and β= +∞.

• These value of alpha and beta 
passed down to node B where again 
α= -∞ and β= +∞, and Node B 
passes the same value to its child D.



Step 2: 

• At Node D, the value of α will be 
calculated as its turn for Max. 

• The value of α is compared with firstly 2 
and then 3, and the max (2, 3) = 3 will be 
the value of α at node D and node value 
will also 3.

Step 3: 

• Now algorithm backtrack to node B, 
where the value of β will change as this is 
a turn of Min.

• Now β= +∞, will compare with the 
available subsequent nodes value, i.e. min 
(∞, 3) = 3, hence at node B now α= -∞, 
and β= 3.

In the next step, algorithm traverse the next 
successor of Node B which is node E, and the 
values of α= -∞, and β= 3 will also be passed.



Step 4: 

• At node E, Max will take its turn, 
and the value of alpha will 
change. 

• The current value of alpha will be 
compared with 5, so max (-∞, 5) 
= 5, hence at node E α= 5 and β= 
3, where α>=β, so the right 
successor of E will be pruned, and 
algorithm will not traverse it, and 
the value at node E will be 5.



Step 5: 

• At next step, algorithm again 
backtrack the tree, from node B to 
node A. 

• At node A, the value of alpha will 
be changed the maximum available 
value is 3 as max (-∞, 3)= 3, and β= 
+∞, these two values now passes 
to right successor of A which is 
Node C.

• At node C, α=3 and β= +∞, and the 
same values will be passed on to 
node F.

Step 6: 

• At node F, again the value of α will 
be compared with left child which 
is 0, and max(3,0)= 3, and then 
compared with right child which is 
1, and max(3,1)= 3 still α remains 3, 
but the node value of F will 
become 1.



Step 7:

• Node F returns the node value 1 
to node C, at C α= 3 and β= +∞, 
here the value of beta will be 
changed, it will compare with 1 
so min (∞, 1) = 1. 

• Now at C, α=3 and β= 1, and 
again it satisfies the condition 
α>=β, so the next child of C 
which is G will be pruned, and 
the algorithm will not compute 
the entire sub-tree G.



Step 8:

• C now returns the value of 1 
to A here the best value for A 
is max (3, 1) = 3. 

• Following is the final game 
tree which is showing the 
nodes which are computed 
and nodes which has never 
computed. 

• Hence the optimal value for 
the maximizer is 3 for this 
example.



Move Ordering in Alpha-Beta pruning:

• The effectiveness of alpha-beta pruning is highly dependent on the order in 
which each node is examined. Move order is an important aspect of alpha-
beta pruning.

• It can be of two types:
• Worst ordering: In some cases, alpha-beta pruning algorithm does not prune any of 

the leaves of the tree, and works exactly as minimax algorithm. In this case, it also 
consumes more time because of alpha-beta factors, such a move of pruning is called 
worst ordering. In this case, the best move occurs on the right side of the tree. The 
time complexity for such an order is O(bm).

• Ideal ordering: The ideal ordering for alpha-beta pruning occurs when lots of pruning 
happens in the tree, and best moves occur at the left side of the tree. We apply DFS
hence it first search left of the tree and go deep twice as minimax algorithm in the 
same amount of time. Complexity in ideal ordering is O(bm/2).



Rules to find good ordering:

Following are some rules to find good ordering in alpha-beta pruning:
• Occur the best move from the shallowest node.

• Order the nodes in the tree such that the best nodes are checked first.

• Use domain knowledge while finding the best move. Ex: for Chess, try order: 
captures first, then threats, then forward moves, backward moves.

• We can bookkeep the states, as there is a possibility that states may repeat.



References

• https://www.javatpoint.com/ai-adversarial-search

• https://www.javatpoint.com/mini-max-algorithm-in-ai

• https://www.javatpoint.com/ai-alpha-beta-pruning


