Heuristic Searching

Kecerdasan Komputational

Algoritma Pencarian (Searching)

* Merupakan algoritma untuk mencari kemungkinan penyelesaian
* Sering dijumpai oleh peneliti di bidang Al

* Dalam melakukan pencarian, salah satu cara yang banyak digunakan
untuk menggambarkan masalah adalah dengan mencantumkan atau
menggambarkan semua kemungkinan keadaan yang ada.

* Memecahkan masalah berarti bergerak atau berpindah dari satu
ruang (node) dari titik awal sampai titik yang dituju (ditentukan), oleh
Karena itu kita memerlukan satu set operator untuk bergerak dari
satu node ke node lainnya.

Mendefinisikan permasalahan

* Mendefinisikan suatu state space (ruang keadaan)
* Menetapkan satu atau lebih state awal
* Menetapkan satu atau lebih state tujuan

* Menetapkan rules (kumpulan aturan)
* Generalisasi
* Asumsi

Atribut Pencarian

* Optimalisasi: apakah algoritma dapat menemukan cost path terendah
untuk mencapai goal?

* Kelengkapan: apakah algoritma akan menemukan jalur menuju
goal/tujuan jika memang ada?
* digunakan untuk mendefinisikan “return failure otherwise”

* jika tidak ada solusi, dan algoritma tidak dapat mendeteksinya (mendeteksi state

berulang-ulang(loop)), maka akan menjadi infinite search dan tidak akan ada hasil
yang dikembalikan.

* Kompleksitas Waktu: waktu yang dibutuhkan untuk melakukan pencarian
(contoh: jumlah nodes yang digeneralisasikan selama proses pencarian).

* Kompleksitas waktu: memori yang dibutuhkan.

Kriteria mengukur perfomansi metode pencarian

* Completeness : apakah metode tersebut menjamin
penemuan solusi jika solusinya memang ada?

* Time complexity : berapa lama waktu yang diperlukan?
[semakin cepat, semakin baik]

* Space complexity : berapa banyak memori yang diperlukan

* Optimality : apakah metode tersebut menjamin menemukan
solusi yang terbaik jika terdapat beberapa solusi berbeda?

Metode searching

* Terdapat dua metode untuk melakukan pencarian yaitu dengan
* BLIND SEARCH
* HEURISTIC SEARCH

Types of search algorithms

Search Algorithms

HEURISTIC SEARCHING
(Informed searching)

Metode pencarian heuristics

Pencarian heuristik adalah teknik pencarian yang menggunakan metode heuristik untuk
pergerakannya (berpindah).

Heuristik sendiri merupakan aturan praktis yang mungkin mengarah pada solusi.

Heuristik membantu mengurangi jumlah alternatif dari bilangan eksponensial menjadi bilangan
polinomial.

Here, the algorithms have information on the goal state, which helps in more efficient
searching.

Dalam pencarian heuristik setiap state diberi sebuah “heuristic value” (h-value) yang digunakan
pencarian dalam memilih langkah terbaik selanjutnya.

Contoh
* Generate and Test
* Hill Climbing
* Best First Search (A* dan Greedy)
* Branch and bound
* Dynamic programming
* Alpha Beta Pruning, dll

What is in a “heuristic?”

f(n) = g(n) + h(n)

/ \

The heuristic value of node n The estimated cost of achieving the goal

(from current node n to the goal)
The actual cost of node n

(from the root to current node n)

Heuristics Search :
* In aninformed search, a heuristic is a function that estimates how close a state is to the goal state.
* For examples — Manhattan distance, Euclidean distance, etc.
* Lesser the distance, closer the goal.
* Different heuristics are used in different informed algorithms.

Heuristic / Informed Search Algorithms

* This information is obtained by something called a heuristic.

* Example of Informed Search Algorithms:

1. Generate and Test

2. Best First Search
2.1. Greedy Search
2.2. A* Tree Search

A* Graph Search

Hill Climbing

Branch and bound
Dynamic programming
Alpha Beta Prunning

N o v kW

Heuristic Searching 1.
Generate and Test Algorithm

* Merupakan algoritma searching yang paling sederhana yang
menjamin untuk menemukan solusi jika dilakukan secara sistematis

dan ada solusinya

* Pada prinsipnya metode ini merupakan penggabungan antara depth-
first search dengan pelacakan mundur (backtracking), yaitu bergerak
ke belakang menuju pada suatu keadaan awal.

e Efisien untuk masalah sederhana.

Kelemahan Generate and Test algorithm

* Kurang efisien untuk masalah yang besar atau kompleks.

* Perlu membangkitkan semua kemungkinan sebelum dilakukan
pengujian

* Membutuhkan waktu yang cukup lama dalam pencariannya karena
harus menentukan semua kemungkinan terlebih dahulu sebelum
melakukan pengujian.

Contoh Generate & Test : “Travelling Salesman Problem (TSP)”

8
Seorang salesman ingin mengunjungi n kota. -ﬂ.ﬁﬁ' Elj-
Jarak antara tiap-tiap kota sudah diketahui. 4
Kita ingin mengetahui rute terpendek dimana T 5
setiap kota hanya boleh dikunjungi tepat 1 kali. ~
Misalkan ada 4 kota (A, B, C, dan D) dengan @ c |
jarak antara tiap-tiap kota seperti tampak pada G \-—J

graph.

Alur pencarian dengan Generale and Tes!

Pencarian Lintzsan Fanjang Lintasan Fanjang
K- Lintasan Terpilih Lintasan
Terpilih Algoritma

| 1 ABCD 19 ABCD 19 | Generate & Test
| 2 ABDC 18 ABDC 18 |
| 3 ACBD 12 ACBD 12 |
T 4 ACDE 13 ACED 12| ‘
| 5 ADBC 16 ACBD 12 |
| |

Dst. ..

Algoritma Generate and Test

1. Tentukan suatu kemungkinan solusi (menentukan suatu titik
tertentu atau lintasan tertentu dari keadaan awal).

2. Uji untuk melihat apakah node tersebut benar-benar merupakan
solusinya dengan cara membandingkan node tersebut atau node

akhir dari suatu lintasan yang dipilih dengan kumpulan tujuan yang
diharapkan.

3. lJika solusi ditemukan, keluar. Jika tidak, ulangi kembali langkah yang
pertama.

Heuristic Searching 2.
Best First Search Algorithm

https://www.mygreatlearning.com/blog/best-first-search-bfs/

* Use an evaluation function to decide which among the various available nodes
is the most promising (or ‘BEST’) before traversing to that node.

* The Best first search uses the concept of a Priority queue and heuristic search.

* To search the graph space, the BFS method uses two lists for tracking the
traversal.

* An ‘OPEN’ list which keeps track of the current ‘immediate’ nodes available for
traversal and ‘CLOSED’ list that keeps track of the nodes already traversed.

Best First Search Algorithm

1. Create 2 empty lists: OPEN and CLOSED
2. Start from the initial node (say N) and put it in the ‘ordered” OPEN list
3. Repeat the next steps until GOAL node is reached

1.
2.

3.

If OPEN list is empty, then EXIT the loop returning ‘False’

Select the first/top node (say N) in the OPEN list and move it to the CLOSED list. Also capture the
information of the parent node

If N is a GOAL node, then move the node to the Closed list and exit the loop returning ‘True’. The solution
can be found by backtracking the path

If N is not the GOAL node, expand node N to generate the ‘immediate’ next nodes linked to node N and
add all those to the OPEN list

Reorder the nodes in the OPEN list in ascending order according to an evaluation function f(n)

* This algorithm will traverse the shortest path first in the queue.
* The time complexity of the algorithm is given by O(n*logn) .

Variants of Best First Search

2.1. Greedy Best First Search
2.2. A* Best First Search.

* The only difference between Greedy BFS and A* BFS is in the
evaluation function.

* For Greedy BFS, the evaluation function is f(n) = h(n).
* For A* BFS, the evaluation function is f(n) = g(n) + h(n).

2.1. Greedy Best First Search Algorithm (1)

https://www.javatpoint.com/ai-informed-search-algorithms
https://www.mygreatlearning.com/blog/best-first-search-bfs/

* The Greedy BFS algorithm selects the path which appears to be the
best at the moment.

* It is the combination of depth-first search and breadth-first search
algorithmes.

* It uses the heuristic function and search.
 Best-first search allows us to take the advantages of both algorithms.

e With the help of best-first search, at each step, we can choose the
most promising node.

Greedy Best First Search Algorithm (2)

https://www.geeksforgeeks.org/search-algorithms-in-ai/

* In the best first search algorithm, we expand the node which is closest to
the goal node and the closest cost is estimated by heuristic function, i.e.

f(n) = h(n)
* Were, h(n) is
» estimated cost from node n to the goal.

* The “closeness” is estimated by a heuristic h(x).
* The lower the value of h(x), the closer is the node from the goal.

* The greedy best first algorithm is implemented by the priority queue.

 Strategy: Expand the node closest to the goal state, i.e. expand the node
with lower h value.

Greedy Best First Search Algorithm (3)
Example of application
Let’s say we want to drive from city S to city E in the shortest possible

road distance, and we want to do it in the fastest way, by exploring the
least number of cities in the way, i.e. the least number of steps.

Heuristic value
E of node d

Whenever we arrive at an intermediate city, we get to know the trip

distance from that city to our goal city E. This distance is an approximation

of how close we are to the goal from a given node and is denoted by the 9
(]

heuristic function h(n). This heuristic value is mentioned within each 4]
node. However, note that this is not always equal to the actual road

distance, as the road may have many curves while moving up a hill, and 9
more.

Also, when we travel from one node to the other, we get to know the
actual road distance between the current city and the immediate next
city on the way and is mentioned over the paths in the given figure. The
sum of the distance from the start city to each of these immediate next
city is denoted by the function g(n).

At any point, the decision on which city to go next is governed by our
evaluation function. The city which gives the least value for this
evaluation function will be explored first.

Greedy Best First Search algorithm:

* Step 1: Place the starting node into the OPEN list.
 Step 2: If the OPEN list is empty, Stop and return failure.

 Step 3: Remove the node n, from the OPEN list which has the lowest value
of h(n), and places it in the CLOSED list.

 Step 4: Expand the node n, and generate the successors of node n.

* Step 5: Check each successor of node n, and find whether any node is a
goal node or not. If any successor node is goal node, then return success
and terminate the search, else proceed to Step 6.

 Step 6: For each successor node, algorithm checks for evaluation function
f(n), and then check if the node has been in either OPEN or CLOSED list. If
the node has not been in both list, then add it to the OPEN list.

* Step 7: Return to Step 2.

Example 1: Greedy Best-first Search Algorithm (1)

> J

L

e.
(5]

h(n)=10

| =

f(n) = h(n)

Greedy BFS with evaluation

function f(n) = h{n)
1 |

Step 1 - Start by adding the start node
(S) to the open list with the path
distance as 0

to the OPEN list

Step 2 (a) - Move the first node in the
OPEN list to the CLOSED list and expand
its immediate successors by adding them

OPEN |]

OPEN I CLOSED

Node

Step 2 (b) - Re-order the list in ascending
order of the combined hueristic value
CLOSED

Parent
Node

) Parent
o Node hin Node
OQde pde : m}l N{m
oGe
S 10 B 7
C 8

Repeat the next steps until the OPEN
List is empty or the Goal node is moved
to the CLOSED list

Step 3 (a) - Move the first node in the

QPEN list to the CLOSED hist and expand
its immediate successors by adding them
to the OPEN list

Step 3 (b) - Re-order the list in ascending
order of the combined hueristic value

OPEN I CLOSED

Parent
Node

S |

OPEN l CLOSED
Node._] Node Parent Node
H 6 S
[t 1= B S
D-|a
IFNE
I

Example 1: Greedy Best-
first Search Algorithm (2)

Step 4 (a) - Move the first node in the
OPEN list to the CLOSED list and expand
its immediate successors by adding them to
the OPEN list

OPEN I CLOSED

Parent
Node hi(n) Il'-lode Neds
C 8 S
D g B S
A g | H B |
F 3
G 3

Step 5 (a) - Move the first node in the OPEN
list to the CLOSED list and expand its
immediate successors by adding them o the
OPEN list

Step 5 (b) - Re-order the list in ascending order
of the combined hueristic value

c e B S
D |@ 4 B
A |9 G H

Step 4 (b) - Re-order the list in ascending
order of the combined hueristic value

oPeN || CLOSED
Mode h{n) I Node Parent Node

G | 3 S

F 8 B S

C 8 H B

D 8

A 9

Step 6 (a) - Move the first node in the OPEN
list to the CLOSED list and expand ii's

immediate successors by adding them to the
OPEN list

OPEN I CLOSED

Node hin)] Node Parent Node

=00
0| oo
T

@
G IT|m|w

H I

EXIT returning True' as the Goal node (E) is
maoved to the CLOSED list. Backirack the
closed list to get the optimal path (E —= G —=
H-=B-=35)

PATH:E-G-H-B-S

Solution. Starting from S, we can traverse to

Example 2: Greedy BFS Search A(h=9) or D(h=5). We choose D, as it has the
Question. Find the path from Sto G using lower heuristic cost. Now from D, we can
greedy search. The heuristic values h of move to B(h=4) or E(h=3). We choose E with
each node below the name of the node. lower heuristic cost. Finally, from E, we go to

G(h=0). This entire traversal is shown in the
search tree below, in blue.

Selesaikan
menggunakan
model tabel
seperti pada
Example 1

Path:S->D->E->G
Advantage: Works well with informed search problems, with fewer steps to reach a goal.
Disadvantage: Can turn into unguided DFS in the worst case.

Greedy Best-first Search Algorithm

* Advantages:

* Best first search can switch between BFS and DFS by
gaining the advantages of both the algorithms.

* This algorithm is more efficient than Breadth FS and
Depth FS algorithms.

* Disadvantages:

* It can behave as an unguided depth-first search in the
worst case scenario.

* |t can get stuck in a loop as DFS.
* This algorithm is not optimal.

Greedy Best First Search algorithm

* Time Complexity: The worst case time complexity of Greedy best first
search is O(b™).

* Space Complexity: The worst case space complexity of Greedy best
first search is O(b™). Where, m is the maximum depth of the search
space.

* Complete: Greedy best-first search is also incomplete, even if the
given state space is finite.

* Optimal: Greedy best first search algorithm is not optimal.

2.2. A* Tree (A* Best First) Search Algorithm

https://www.geeksforgeeks.org/search-algorithms-in-ai/

* A* Tree Search, or simply known as A* Search, combines the
strengths of uniform-cost search (UCS) and greedy search.

* |n this search, the heuristic is the summation of the cost in UCS,
denoted by g(x), and the cost in greedy search, denoted by h(x).

* The summed cost is denoted by f(x).
* f(x) in A* search is denoted as

fx) = gx) + h(x)

f(x) = gx) + h(x)

* Here, g(x) is called the backward cost, and is the cumulative cost of a
node from the root node.

* And, h(x) is called the forward cost, and is an estimation of the
distance of the current node from the goal node.

* A* search is optimal only when for all nodes, the forward cost for a
node h(x) underestimates the actual cost h*(x) to reach the goal.

* This property of A* heuristic is called admissibility.
* Admissibility: 0 < h(x) < h*(x)
* Strategy: Choose the node with lowest f(x) value.

Example 1: A* Best-first Search

A* BFS with evaluation function f(n) = h{n) +| |Step 2 (a) - Move the first node in the OPEN |Step 2 (b) - Re-order the list in ascending

AlgO rithm (1) g(n) list to the CLOSED list and expand its order of the combined hueristic value
_ | | [1 1 | | immediate successors by adding them to OPEN [CLOSED
f(n)=h(n)+g(n) the OPEN list
Step 1 - Start by adding the start node (S) to the Node o(n) hn) fn) l| Node Za;::t
h(n)=10 |onen list with the path distance as 0 OPEN CLOSED
B fey : D I Parent B |2]7|9] 8
- 1 = Node n n) f(n) § Node
ode g ode ' o L Node C| 28"
) ode A
S 0 |10 10 B 2 7 9 A | L | 9] 16]
C 3 |8 [0

: Repeat the next steps until the OPEN List is empty
- &= i g | or the Goal node is moved to the CLOSED list
-
H
6

Step 3 (b) - Re-order the list in ascending order of
IEI Step 3 (a) - Move ihe first node in the OPEN list the combined hueristic value
o to the CLOSED list and expand its immediate OPEN . CLOSED
successors by adding them to the OPEN list Node g(n) hin) f(n)] Node Parent Node
o I H 3|68 S
OPEN CLOSED —Ic 3 8 |11 B g
I o [6 [8 [14
MNode g(n) hin) f(n)] Mode Parent Node A |71 9 (16
cCl|3 8| N S I | !
Al7]9] 18 | e s |
D 6|8 | 14
H 3|6 9

Step 4 (a) - Move the first node in the OPEN list
to the CLOSED list and expand its immediate
successors by adding them to the OPEN list

OPEN CLOSED
Parent

Node g(n) h(n) f(n) I Node . .

C |3 [8] 1 S

D |6 |8 14 E S

A |7 |96]|]|[H B |

F | 6 |6 12

G _[53]s

Step 5 (a) - Move the first node in the OPEN list to
the CLOSED list and expand its immediate
successors by adding them to the OPEN list

OPEN CLOSED
Node g(n) h{n) fin) l Node Parent Node
c Jje|n S
F 6 |6 |12 B S
D 68|14 H B
A 719 |16 €] H|
| E 71017 |

Example 1: A* Best-first Search
Algorithm (2)

Step 5 (b) - Re-order the list in ascending order of
the combined hueristic value
OPEN CLOSED

Node g(n) hi{n) f(n) Node Parent Node

3 S
C EN] B
F |6] 86 |12/ H B
D (6|8 |14 © H
A 7] 9 |6

L[|

Step 4 (b) - Re-order the list in ascending order of
the combined hueristic value

OPEN
G 5 3 8]
| C 3 g | N B S
F L] 6 | 12 H B
D 6 8 | 14
| A T g | 16
1 | 1

Step 6 (a) - Move the first node in the OPEN list to
the CLOSED list and expand [{'s immediate
successors by adding them to the OPEN list

OPEN I CLOSED
Node g(n) h(n) f(rl)l Node Parent Node

EXIT returning "True' as the Goal node (E) is moved
to the CLOSED list. Backirack the closed list to get
the optimal path (E —> G->H —= B --> §)

PATH:E-G-H-B-S

Example 2: A* Tree (Best First) Search

f(x) = gx) + h(x)
g(x) = backward
h(x) = forward

Question. Find the path to reach from S to G using A* search.

Solution. Starting from S, the algorithm computes g(x) +
h(x) for all nodes in the fringe at each step, choosing the
node with the lowest sum. The entire working is shown
in the table below.

Note that in the fourth set of iteration, we get two paths
with equal summed cost f(x), so we expand them both in
the next set. The path with lower cost on further
expansion is the chosen path.

PATH
S

S->A
S>DV

S>D->BV
S->D->E

S>D->B->CV
S->D->B->EV

S>D->B->C->G
S>D->B>E->GV

Path: S->D->B->E->G
Cost: 7

h(x)
7

o

g(x)
0

2+1=3
2+4=6

3+2=5
3+1=4

5+4=9
4+3=7

Selesaikan
menggunakan
model tabel
seperti pada
Example 1

f(x)

12

Heuristic Searching 3.
Branch and Bound Search Algorithm

https://www.geeksforgeeks.org/job-assignment-problem-using-branch-and-bound/

* Branch and bound is an algorithm design paradigm which is generally used for
solving combinatorial optimization problems.

* The selection rule for the next node in BreadthFS and DepthFS is “blind”. i.e., the
selection rule does not give any preference to a node that has a very good chance
of getting the search to an answer node quickly.

* The search for an optimal solution can often be speeded by using an “intelligent”
ranking function, also called an approximate cost function to avoid searching in
sub-trees that do not contain an optimal solution.

* It is similar to BreadthFS-like search but with one major optimization.
* Instead of following FIFO order, we choose a live node with least cost.

* We may not get optimal solution by following node with least promising cost, but
it will provide very good chance of getting the search to an answer node quickly.

Job Assignment Problem using Branch And Bound

https://www.geeksforgeeks.org/job-assigsnment-problem-using-branch-and-bound/
* Let there be N workers and N jobs.

* Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-
job assignment.

* GOAL: It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to
each agent in such a way that the total cost of the assignment is minimized.

Worker A
Jjob1 Job2 Job3 Joba taKes8
units of .
finish
B |6 4 3 7 job 4.
C |5 & 1 2
D |7 B 9 4

An example job assignment problem. Green values

show optimal job assignment that is A-Job2, B-Job1
C-Job3 and D-Job4

There are two approaches to calculate the cost function

* For each worker, we choose job with minimum cost from list of
unassigned jobs (take minimum entry from each row).

* For each job, we choose a worker with lowest cost for that job from
list of unassigned workers (take minimum entry from each column).

The first approach is followed:
For each worker, we choose job with minimum cost from list of
unassigned jobs (take minimum entry from each row).

* Let’s take below example and try to calculate promising cost when
Job 2 is assigned to worker A.

Jobl Job2 Job3 Jobd

AlS 2 7 3
B |© 4 3 b
C |3 & 1 &

* Since Job 2 is assigned to worker A (marked in green), cost
becomes 2 and Job 2 and worker A becomes unavailable
(marked in red). Job1 Job2 Job3 Joba

A9 2 7 8

B |6 4 3 7

C |5 8 1 8

D |7 6 9 4

* Now we assign job 3 to worker B as it has minimum cost
from list of unassigned jobs. Cost becomes 2 + 3 =5 and

Job 3 and worker B also becomes unavailable.
lob1 Job2 Job3 Joh4

A9 2 7 8
B |6 4 3 7
C|5 8 1 8
D|7 6 9 4

* Finally, job 1 gets assigned to worker C as it has minimum
cost among unassigned jobs and job 4 gets assigned to
worker C as it is only Job left. Total cost becomes 2 + 3 +5

4 =14, Job1l Job2 Job3 Job4
A |9 2 7 8
B |6 4 3 7
C |5 8 1 8
D |7 b 9 4

Level O

Level 1

Level 2

Level 3

Below diagram shows complete search space
diagram showing optimal solution path in

green.

B -»1

Heuristic Searching 3:
A* Graph Search Algorithm

https://www.geeksforgeeks.org/search-algorithms-in-ai/

* A* tree search works well, except that it takes time re-exploring the
branches it has already explored.

* In other words, if the same node has expanded twice in different branches
of the search tree, A* search might explore both of those branches, thus
wasting time

* A* Graph Search, or simply Graph Search, removes this limitation by
adding this rule: do not expand the same node more than once.

* Heuristic. Graph search is optimal only when the forward cost between
two successive nodes A and B, given by h(A) — h(B& , is less than or equal
to the backward cost between those two nodes g(A -> B).

* This property of graph search heuristic is called consistency.
* Consistency: h(4A) — h(B) < g(A - B)

Example of A* Graph Search

Question. Use graph search to find path
from S to G in the following graph.

fe2=1+4=y

fed=-2+2=7

Path: S->D->B->E->G
Cost: 7

Solution. We solve this question pretty much the same way
we solved last question, but in this case, we keep a track of
nodes explored so that we don’t re-explore them.

Heuristic Searching 4
Hill Climbing

* Hill climbing search is a local search problem.

e The purpose of the hill climbing search is to climb a hill and reach the
topmost peak/point of that hill.

* [t is based on the heuristic search technique where the person who is
climbing up on the hill estimates the direction which will lead him to
the highest peak.

Hill Climbing

* Metode ini hampir sama dengan metode Generate and Test, hanya
saja proses pengujian dilakukan dengan menggunakan fungsi
heuristic.

 Pembangkitan keadaan berikutnya tergantung pada feedback dari
prosedur pengetesan.

* Tes yang berupa fungsi heuristic ini akan menunjukkan seberapa
baiknya nilai terkaan yang diambil terhadap keadaan-keadaan lainnya

yang mungkin.

State-space Landscape of Hill climbing algorithm

State space diagram is a graphical representation of the set of states our search algorithm can reach vs the value of our objective function(the

function which we wish to maximize).

X-axis : denotes the state space, i.e., states or configuration our algorithm may reach.
Y-axis : denotes the values of objective function corresponding to a particular state.
The best solution will be that state space where objective function has maximum value(global maximum).

Ohjective function Global
.‘h Wlasximum

Shoulder Logal

Maximuin
"Flm:'f Local

P P State Space
state

A one-dimensional state-space landscape Im which elevation
correspengds to the objective function

https://www.tutorialandexample.com/hill-climbing-algorithm/

The topographical regions.

The concept of hill climbing algorithm, consider the below
landscape representing the goal state/peak and the current
state of the climber

* Global Maximum: It is the highest point on the hill, which is
the goal state.

* Local Maximum: It is the peak higher than all other peaks but
lower than the global maximum.

* Flat local maximum: It is the flat area over the hill where it has
no uphill or downhill. It is a saturated point of the hill.

e Shoulder: It is also a flat area where the summit is possible.

e Current state: It is the current position of the person.

The topographical regions

The concept of hill climbing algorithm, consider the below landscape
representing the goal state/peak and the current state of the climber

* Global Maximum: It is the highest point on the hill, which is the goal
state.

* Local Maximum: It is the peak higher than all other peaks but lower
than the global maximum.

* Flat local maximum: It is the flat area over the hill where it has no
uphill or downhill. It is a saturated point of the hill.

* Shoulder: It is also a flat area where the summit is possible.
e Current state: It is the current position of the person.

Types of Hill climbing search algorithm

Simple hill
climbing

o

U
|
|

| Hill Climbing Algorithm

| Steepest-
+ ascent hill *

: climbing

o

L o

-

.

o

-0

Stochastic hill Random-
] climbing [restart hill
climbing

L

-8

Types of Hill Climbing

1. Simple Hill Climbing
* Simple hill climbing is the simplest way to implement a hill-climbing algorithm.

* It only evaluates the neighbour node state at a time and selects the first one which optimizes
current cost and set it as a current state.

* It only checks it’s one successor state, and if it finds better than the current state, then move else
be in the same state.

2. Steepest-Ascent hill climbing
* The steepest-Ascent algorithm is a variation of the simple hill-climbing algorithm.

* This algorithm examines all the neighbouring nodes of the current state and selects one
neighbour node which is closest to the goal state.

* This algorithm consumes more time as it searches for multiple neighbours.

3. Stochastic hill climbing
 Stochastic hill climbing does not examine for all its neighbours before moving.

* Rather, this search algorithm selects one neighbour node at random and evaluate it as a current
state or examine another state.

Simple hill climbing search

 Simple hill climbing is the simplest technique to climb a hill.
* The task is to reach the highest peak of the mountain.
* The movement of the climber depends on his move/steps.

* If he finds his next step better than the previous one, he continues to
move else remain in the same state.

* This search focus only on his previous and next step.

Steepest-Ascent hill climbing

 Step 1: Evaluate the initial state, if it is goal state then return success and
stop, else make the current state as your initial state.

 Step 2: Loop until a solution is found or the current state does not change.
* Let S be a state such that any successor of the current state will be better than it.

* For each operator that applies to the current state;
* Apply the new operator and generate a new state.
e Evaluate the new state.
* Ifitis goal state, then return it and quit, else compare it to the S.
* |fitis better than S, then set new state as S.
* Ifthe Sis better than the current state, then set the current state to S.

* Step 5: Exit.

Simple hill climbing algorithm

{ It examines the neighboring nodes one by one and selects the first neighboring
node which optimizes the current cost as next node.}

 Step 1: Evaluate the initial state, if it is goal state then return success
and Stop.

 Step 2: Loop Until a solution is found or there is no new operator left
to apply.
 Step 3: Select and apply an operator to the current state.

 Step 4: Check new state:
e Ifitis goal state, then return success and quit.

 else if it is better than the current state then assign new state as a current
state.

 else if not better than the current state, then return to step 2.
* Step 5: Exit.

Limitations of Hill climbing algorithm

* Hill climbing algorithm is a fast and furious approach.

* It finds the solution state rapidly because it is quite easy to improve a
bad state.

* But, there are some limitations of this search:

* Local Maxima
* Plateau
* Ridges

Local Maxima

* It is that peak of the mountain which is
highest than all its neighboring states but
lower than the global maxima.

* It is not the goal peak because there is
another peak higher than it.

e Solution:

* Backtracking technique can be a solution of
the local maximum in state space landscape.

* Create a list of the promising path so that the
algorithm can backtrack the search space and
explore other paths as well.

A

Local Maximum

Global Maximum

Plateau

* |t is a flat surface area where no uphill exists.

* |t becomes difficult for the climber to decide
that in which direction he should move to reach
the goal point.

* Sometimes, the person gets lost in the flat area.

e Solution:

» Take big steps or very little steps while searching, to
solve the problem.

 Randomly select a state which is far away from the
current state so it is possible that the algorithm
could find non-plateau region.

A

Plateau/Flat area

Ridges

* It is a challenging problem where the
person finds two or more local maxima of
the same height commonly.

* |t becomes difficult for the person to
navigate the right point and stuck to that
point itself.

* Solution:
* by using of bidirectional search, or
* by moving in different directions

$ Ridges

Referensi

* https://users.cs.cf.ac.uk/Dave.Marshall/Al2/node22.html#figdep tree
* https://www.geeksforgeeks.org/search-algorithms-in-ai/
e https://www.javatpoint.com/ai-uninformed-search-algorithms

e https://syifamss.wordpress.com/2017/12/08/metode-pencarian-
buta-blind-search-metode-pencarian-heuristik/

e http://alfanfikri27.blogspot.com/2017/12/metode-blind-search-
heuristik.html

* https://fitrahadiarief.wordpress.com/2017/12/09/metode-pencarian-
buta-blind-search-method-dan-metode-pencarian-heuristik/

