
Adversarial Search
(Game)

https://www.javatpoint.com/ai-adversarial-search

https://www.javatpoint.com/mini-max-algorithm-in-ai

https://www.javatpoint.com/ai-alpha-beta-pruning

Review: blind search and heuristic search

• In previous topics
• search strategies which are only associated with a single agent that aims to

find the solution

• expressed in the form of a sequence of actions.

• But, there might be some situations where more than one agent is
searching for the solution in the same search space.

• This situation usually occurs in game playing  Adversarial Search

Adversarial Search

• Adversarial search is search when there is an "enemy" or "opponent"
changing the state of the problem every step in a direction you do not
want.

• Examples: Chess, business, trading, war.

• You change state, but then you don't control the next state.

• Opponent will change the next state in a way: unpredictable.

• We try to plan ahead of the world and other agents are planning
against us.

• The environment with more than one agent is termed as multi-agent
environment, in which each agent is an opponent of other agent and
playing against each other.

• Each agent needs to consider the action of other agent and effect of that
action on their performance.

• So, Searches in which two or more players with conflicting goals are
trying to explore the same search space for the solution, are called
adversarial searches, often known as Games.

• Games are modeled as a Search problem and heuristic evaluation function,
and these are the two main factors which help to model and solve games in
AI.

Types of Games in AI
1. Perfect information: A game with the perfect information is

that in which agents can look into the complete board.
Agents have all the information about the game, and they
can see each other moves also. Examples are Chess,
Checkers, Go, etc.

2. Imperfect information: If in a game agents do not have all
information about the game and not aware with what's
going on, such type of games are called the game with
imperfect information, such as tic-tac-toe, Battleship, blind,
Bridge, etc.

3. Deterministic games: Deterministic games are those games
which follow a strict pattern and set of rules for the games,
and there is no randomness associated with them.
Examples are chess, Checkers, Go, tic-tac-toe, etc.

4. Non-deterministic games: Non-deterministic are those
games which have various unpredictable events and has a
factor of chance or luck. This factor of chance or luck is
introduced by either dice or cards. These are random, and
each action response is not fixed. Such games are also
called as stochastic games.
Example: Backgammon, Monopoly, Poker, etc.

6

Why new techniques for games?

 “Contingency” problem:

• We don’t know the opponents move !

• The size of the search space:
• Chess : ~15 moves possible per state, 80 ply

• 1580 nodes in tree
• Go : ~200 moves per state, 300 ply

• 200300 nodes in tree

• Game playing algorithms:
• Search tree only up to some depth bound
• Use an evaluation function at the depth bound
• Propagate the evaluation upwards in the tree

Mini-Max Algorithm

8

MINI MAX
• Restrictions:

• 2 players: MAX (computer) and MIN (opponent)

 deterministic, perfect information

 Select a depth-bound (say: 2) and evaluation function

MAX

MIN

MAX

- Construct the tree up till
the depth-bound

- Compute the evaluation
function for the leaves

2 5 3 1 4 4 3

- Propagate the evaluation
function upwards:

- taking minima in MIN

2 1 3

- taking maxima in MAX

3
Select
this move

9

The MINI-MAX algorithm:
Initialise depthbound;

Minimax (board, depth) =

IF depth = depthbound
THEN return static_evaluation(board);

ELSE IF maximizing_level(depth)

THEN FOR EACH child child of board

compute Minimax(child, depth+1);

return maximum over all children;

ELSE IF minimizing_level(depth)

THEN FOR EACH child child of board

compute Minimax(child, depth+1);

return minimum over all children;

Call: Minimax(current_board, 0)

Resume of Mini-Max Algorithm

• In this algorithm two players play the game, one is called MAX and
other is called MIN.

• Both the players fight it as the opponent player gets the minimum
benefit while the player get the maximum benefit.

• Both Players of the game are opponent of each other, where MAX will
select the maximized value and MIN will select the minimized value.

• The minimax algorithm proceeds all the way down to the terminal
node of the tree, then backtrack the tree as the recursion.

• The minimax algorithm performs a depth-first search (DFS) algorithm
for the exploration of the complete game tree.

• Example: Chess, Checkers, tic-tac-toe, go, and various two-players
game.

Working of Min-Max Algorithm:

• Below figure we have taken an example of game-tree
which is representing the two-player game.
• In this example, there are two players one is called

Maximizer and other is called Minimizer.
• Maximizer will try to get the Maximum possible score,

and Minimizer will try to get the minimum possible
score.
• This algorithm applies DFS, so in this game-tree, we

have to go all the way through the leaves to reach the
terminal nodes.
• At the terminal node, the terminal values are given so

we will compare those value and backtrack the tree
until the initial state occurs.

Example 2: Minimax algorithm.

Step-1:

• In the first step, the algorithm
generates the entire game-tree and
apply the utility function to get the
utility values for the terminal states.

• In the below tree diagram, let's take
A is the initial state of the tree.

• Suppose :
• maximizer takes first turn which has

worst-case initial value =- infinity, and
• minimizer will take next turn which has

worst-case initial value = +infinity.

Step 2:

• Now, first we find the utilities value for the
Maximizer, its initial value is -∞, so we will
compare each value in terminal state with
initial value of Maximizer and determines the
higher nodes values. It will find the maximum
among the all.

• For node D max(-1, -∞) => max(-1,4) = 4

• For Node E max(2, -∞) => max(2, 6) = 6

• For Node F max(-3, -∞) => max(-3,-5) = -3

• For node G max(0, -∞) => max(0, 7) = 7

Step 3:

In the next step, it's a turn for
minimizer, so it will compare all
nodes value with +∞, and will
find the 3rd layer node values.

• For node B= min(4,6) = 4

• For node C= min (-3, 7) = -3

Step 4:

Now it's a turn for Maximizer,
and it will again choose the
maximum of all nodes value
and find the maximum value
for the root node.

In this game tree, there are
only 4 layers, hence we reach
immediately to the root node,
but in real games, there will be
more than 4 layers.

• For node A max(4, -3)= 4

That was the complete
workflow of the minimax two
player game.
Rute hasil = A-B-D-I
Dengan nilai = 4

Example 3: Minimax algorithm

Properties of Mini-Max algorithm:

• Complete: Min-Max algorithm is Complete. It will definitely find a
solution (if exist), in the finite search tree.

• Optimal: Min-Max algorithm is optimal if both opponents are playing
optimally.

• Time complexity: As it performs DFS for the game-tree, so the time
complexity of Min-Max algorithm is O(bm), where b is branching
factor of the game-tree, and m is the maximum depth of the tree.

• Space Complexity: Space complexity of Mini-max algorithm is also
similar to DFS which is O(bm).

Limitation of the minimax Algorithm:

• The main drawback of the minimax algorithm is that it gets really slow
for complex games such as Chess, go, etc.

• This type of games has a huge branching factor, and the player has
lots of choices to decide.

• This limitation of the minimax algorithm can be improved from alpha-
beta pruning which we have discussed in the next topic.

Alpha-Beta Pruning

20

Alpha-Beta Pruning
 Generally applied optimization on Mini-max.

 Instead of:

 first creating the entire tree (up to depth-level)

 then doing all propagation

 Interleave the generation of the tree and the
propagation of values.

 Point:

 some of the obtained values in the tree will
provide information that other (non-generated)
parts are redundant and do not need to be
generated.

21

Alpha-Beta Pruning (Alpha-Beta Cut-off)

 Generally applied optimization on Mini-max.

 Instead of:

 first creating the entire tree (up to depth-level)

 then doing all propagation

 Interleave the generation of the tree and the
propagation of values.

 Point:

 some of the obtained values in the tree will
provide information that other (non-generated)
parts are redundant and do not need to be
generated.

22

MIN

MAX

MAX

2

Alpha-Beta idea:
• Principles:

• generate the tree depth-first, left-to-right

 propagate final values of nodes as initial estimates
for their parent node.

2

5

=2

2

1

1

- The MIN-value (1) is already
smaller than the MAX-value of
the parent (2)

- The MIN-value can only
decrease further,

- The MAX-value is only allowed
to increase,

- No point in computing further
below this node

23

Terminology:
- The (temporary) values at MAX-nodes are ALPHA-values

- The (temporary) values at MIN-nodes are BETA-values

MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value

24

The Alpha-Beta principles (1):
- If an ALPHA-value is larger or equal than the Beta-value of a descendant node:

stop generation of the children of the descendant

MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value

25

The Alpha-Beta principles (2):
- If an Beta-value is smaller or equal than the Alpha-value of a descendant node:

stop generation of the children of the descendant

MIN

MAX

MAX

2

2

5

=2

2

3

1

Alpha-value

Beta-value

26

8 7 3 9 1 6 2 4 1 1 3 5 3 9 2 6 5 2 1 2 3 9 7 2 8 6 4

Mini-Max with  at work:

1

2 8

3

5= 8

4

6 8

7

8 9

9 11 13 17 19 21 24 26 28 32 34 36

10 2
12 4
14= 4

15= 4

 4 16

18 1
20 3
22= 5

30= 5
 5 23

 5 31

25 3
27 9 29 6

33 1
35 2
37= 3

 3 38

39= 5
MAX

MIN

MAX

11 static evaluations saved !!

27

“DEEP” cut-offs
- For game trees with at least 4 Min/Max layers:

the Alpha - Beta rules apply also to deeper levels.

4

 4

 4

 4

 4

2

 2

28

The Gain: Best case:

MAX

MIN

MAX

- If at every layer: the best node is the left-most one

Only THICK is explored

29

Example of a perfectly ordered tree

MAX

MIN

MAX

21 20 19 24 23 22 27 26 25 12 11 10 15 14 13 18 17 16 3 2 1 6 5 4 9 8 7

21 24 27 12 15 18 3 6 9

21 12 3

21

Condition for Alpha-beta pruning
• The main condition which required for alpha-beta pruning is: α>=β

Key points about alpha-beta pruning
• The Max player will only update the value of alpha.
• The Min player will only update the value of beta.
• While backtracking the tree, the node values will be passed to upper

nodes instead of values of alpha and beta.
• We will only pass the alpha, beta values to the child nodes.

Exersice 1: Working of Alpha-Beta Pruning

Let's take an example of two-player
search tree to understand the
working of Alpha-beta pruning

Step 1:

• At the first step the, Max player will
start first move from node A where
α= -∞ and β= +∞.

• These value of alpha and beta
passed down to node B where again
α= -∞ and β= +∞, and Node B
passes the same value to its child D.

Step 2:

• At Node D, the value of α will be
calculated as its turn for Max.

• The value of α is compared with firstly 2
and then 3, and the max (2, 3) = 3 will be
the value of α at node D and node value
will also 3.

Step 3:

• Now algorithm backtrack to node B,
where the value of β will change as this is
a turn of Min.

• Now β= +∞, will compare with the
available subsequent nodes value, i.e. min
(∞, 3) = 3, hence at node B now α= -∞,
and β= 3.

In the next step, algorithm traverse the next
successor of Node B which is node E, and the
values of α= -∞, and β= 3 will also be passed.

Step 4:

• At node E, Max will take its turn,
and the value of alpha will
change.

• The current value of alpha will be
compared with 5, so max (-∞, 5)
= 5, hence at node E α= 5 and β=
3, where α>=β, so the right
successor of E will be pruned, and
algorithm will not traverse it, and
the value at node E will be 5.

Step 5:

• At next step, algorithm again
backtrack the tree, from node B to
node A.

• At node A, the value of alpha will
be changed the maximum available
value is 3 as max (-∞, 3)= 3, and β=
+∞, these two values now passes
to right successor of A which is
Node C.

• At node C, α=3 and β= +∞, and the
same values will be passed on to
node F.

Step 6:

• At node F, again the value of α will
be compared with left child which
is 0, and max(3,0)= 3, and then
compared with right child which is
1, and max(3,1)= 3 still α remains 3,
but the node value of F will
become 1.

Step 7:

• Node F returns the node value 1
to node C, at C α= 3 and β= +∞,
here the value of beta will be
changed, it will compare with 1
so min (∞, 1) = 1.

• Now at C, α=3 and β= 1, and
again it satisfies the condition
α>=β, so the next child of C
which is G will be pruned, and
the algorithm will not compute
the entire sub-tree G.

Step 8:

• C now returns the value of 1
to A here the best value for A
is max (3, 1) = 3.

• Following is the final game
tree which is showing the
nodes which are computed
and nodes which has never
computed.

• Hence the optimal value for
the maximizer is 3 for this
example.

Exercise 2: Alpha-Beta pruning
https://dtai.cs.kuleuven.be

α-nodes: At MIN-nodes has minimum infinity number

β-nodes: At MAX-nodes has maximum infinity number

Prune: Parent α-nodes ≥ Child β-nodes

Prune: α-node ≥ β-node

“Deep” cut-off: Parent α-nodes ≥ Child β-nodes

Prune: Parent α-nodes ≥ Child β-nodes

References

• https://www.javatpoint.com/ai-adversarial-search

• https://www.javatpoint.com/mini-max-algorithm-in-ai

• https://www.javatpoint.com/ai-alpha-beta-pruning

• https://dtai.cs.kuleuven.be/education/fai/

