
AI 1 Notes on semantic nets and frames 1996. Page 1

Artificial Intelligence I
Matthew Huntbach, Dept of Computer Science, Queen Mary and Westfield College, London,
UK E1 4NS. Email: mmh@dcs.qmw.ac.uk . Notes may be used with the permission of the author.

Notes on Semantic Nets and Frames
Semantic Nets
Semantic networks are an alternative to predicate logic as a form of knowledge representation. The
idea is that we can store our knowledge in the form of a graph, with nodes representing objects in
the world, and arcs representing relationships between those objects. For example, the following:

Tom

Cat

Cream

Mat

Mammal

Bird

is_a

is_a
is_a

caught

like

sat_on is_a

John

is_owned_by

Fur
has

Animal

is_coloured

Ginger

is intended to represent the data:
Tom is a cat.
Tom caught a bird.
Tom is owned by John.
Tom is ginger in colour.
Cats like cream.
The cat sat on the mat.
A cat is a mammal.
A bird is an animal.
All mammals are animals.
Mammals have fur.
It is argued that this form of representation is closer to the way humans structure knowledge by
building mental links between things than the predicate logic we considered earlier. Note in
particular how all the information about a particular object is concentrated on the node representing
that object, rather than scattered around several clauses in logic.
There is, however, some confusion here which stems from the imprecise nature of semantic nets. A
particular problem is that we haven’t distinguished between nodes representing classes of things,
and nodes representing individual objects. So, for example, the node labelled Cat represents both
the single (nameless) cat who sat on the mat, and the whole class of cats to which Tom belongs,

AI 1 Notes on semantic nets and frames 1996. Page 2

which are mammals and which like cream. The is_a link has two different meanings – it can mean
that one object is an individual item from a class, for example Tom is a member of the class of cats,
or that one class is a subset of another, for example, the class of cats is a subset of the class of
mammals. This confusion does not occur in logic, where the use of quantifiers, names and predicates
makes it clear what we mean so:
Tom is a cat is represented by Cat(Tom)

The cat sat on the mat is represented by ∃x∃y(Cat(x) ∧Mat(y) ∧SatOn(x,y))

A cat is a mammal is represented by ∀x(Cat(X) →Mammal(x))

We can clean up the representation by distinguishing between nodes representing individual or
instances, and nodes representing classes. The is_a link will only be used to show an individual
belonging to a class. The link representing one class being a subset of another will be labelled
a_kind_of , or ako for short. The names instance and subclass are often used in the place of
is_a and ako , but we will use these terms with a slightly different meaning in the section on
Frames below.
Note also the modification which causes the link labelled is_owned_by to be reversed in
direction. This is in order to avoid links representing passive relationships. In general a passive
sentence can be replaced by an active one, so “Tom is owned by John” becomes “John owns Tom”. In
general the rule which converts passive to active in English converts sentences of the form “X is Yed
by Z” to “Z Ys X”. This is just an example (though often used for illustration) of the much more
general principle of looking beyond the immediate surface structure of a sentence to find its d e e p
structure.
The revised semantic net is:

Tom

is_a

caught

like

John

Mat1

Cats

Mats

Mammals

Animals

Birds

Bird1

Cat1

ako
ako

is_a

sat_on

is_a

is_a

ako

owns

Cream

Fur

have

is_coloured

Ginger

Note that where we had an unnamed member of some class, we have had to introduce a node with
an invented name to represent a particular member of the class. This is a process similar to the
Skolemisation we considered previously as a way of dealing with existential quantifiers. For
example, “Tom caught a bird” would be represented in logic by ∃x(bird(x) ∧caught(Tom,x)) ,
which would be Skolemised by replacing the x with a Skolem constant; the same thing was done
above where bird1 was the name given to the individual bird that Tom caught.
There are still plenty of issues to be resolved if we really want to represent what is meant by the
English phrases, or to be really clear about what the semantic net means, but we are getting towards
a notation that can be used practically (one example of a thing we have skated over is how to deal

AI 1 Notes on semantic nets and frames 1996. Page 3

with mass nouns like “fur” or “cream” which refer to things that come in amounts rather than
individual objects).
A direct Prolog representation can be used, with classes represented by predicates, thus:
cat(tom).
cat(cat1).
mat(mat1).
sat_on(cat1,mat1).
bird(bird1).
caught(tom,bird1).
like(X,cream) :– cat(X).
mammal(X) :– cat(X).
has(X,fur) :– mammal(X).
animal(X) :– mammal(X).
animal(X) :– bird(X).
owns(john,tom).
is_coloured(tom,ginger).

So, in general, an is_a link between a class c and an individual m is represented by the fact c(m) .
An a_kind_of link between a subclass c and a superclass s is represented by s(X) :- c(X) . If a
property p with further arguments a1 , … ,an is held by all members of a class c , it is represented by
p(X,a1,…,an) :- c(X) . If a property p with further arguments a1 , … ,an is specified as held by
an individual m, rather than a class to which m belongs, it is represented by p(m,a1,…,an) .

Inheritance
This Prolog equivalent captures an important property of semantic nets, that they may be used for a
form of inference known as inheritance. The idea of this is that if an object belongs to a class
(indicated by an is_a link) it inherits all the properties of that class. So, for example as we have
a likes link between cats and cream , meaning “all cats like cream”, we can infer that any object
which has an is_a link to cats will like cream. So both Tom and Cat1 like cream. However, the
is_coloured link is between Tom and ginger , not between cats and ginger , indicating tha t
being ginger is a property of Tom as an individual, and not of all cats. We cannot say that Cat1 is
ginger, for example; if we wanted to we would have to put another is_coloured link between
Cat1 and ginger .
Inheritance also applies across the a_kind_of links. For example, any property of mammals or
animals will automatically be a property of cats . So we can infer, for example, that Tom has fur,
since Tom is a cat, a cat is a kind of mammal, and mammals have fur. If, for example, we had
another subclass of mammals, say dogs, and we had, say, Fido is_a dog , Fido would inherit the
property has fur from mammals, but not the property likes cream , which is specific to cats. This
situation is shown in the diagram below:

Mammals

Cats Dogs

Tom Fido

Cream

Fur

is_a is_a

ako ako

have

like

AI 1 Notes on semantic nets and frames 1996. Page 4

Reification
An alternative form of representation considers the semantic network directly as a graph. We have
already seen ways of representing graphs in Prolog. We could represent each edge in the semantic
net graph by a fact whose predicate name is the label on the edge. The nodes in this graph,
whether they represent individuals or classes are represented by arguments to the facts
representing edges. This gives the following representation for our initial graph:
is_a(mat1,mats).
is_a(cat1,cats).
is_a(tom,cats).
is_a(bird1,birds).
caught(tom,bird1).
ako(cats,mammals).
ako(mammals,animals).
ako(birds,animals).
like(cats,cream).
owns(john,tom).
sat_on(cat1,mat1).
is_coloured(tom,ginger).
have(mammals,fur).

Alternatively, the graph could be built using the cells or pointers of an imperative language. There
are also special purpose knowledge representation languages which provide a notation which
translates directly to this sort of graph.
This process of turning a predicate into an object in a knowledge representation system is known as
reification. So, for example, the constant symbol cats represents the set of all cats, which we can
treat as just another object.

The Case for Case
We have shown how binary relationships may be represented by arcs in graphs, but what about
relationships with more than two arguments? For example, what about representing the sentence
“John gave the book to Mary”? In predicate logic, we could have a 3-ary predicate gave , whose
first argument is the giver, second argument the object given and third argument the person to whom
it was given, thus gave(John,Book1,Mary) . The way this can be resolved is to consider the act of
giving a separate object (remember how in the first set of notes we saw how the pronoun “it” could in
some contexts be taken to refer to a previously mentioned action itself rather than to an object
involved in the action), thus it is further reification. We can than say that any particular act of
giving has three participants: the donor, the recipient, and the gift, so the semantic net
representing the sentence is:

Book1John
Mary

Give1

Books

Givings

is_a

is_a

recipient

gift
donor

In fact the three different roles correspond to what is known in natural language grammar as
subjective (the object doing the action, in this case John), objective (the object to which the action is

AI 1 Notes on semantic nets and frames 1996. Page 5

being done, in this case the book) and dative (the recipient of the action, in this case Mary). These
different roles of objects in a sentence are known as cases.
The fact that various natural languages make this case distinction can be used to support using it in
artificial knowledge representation. The “case for case” is associated with the linguist Charles
Fillmore whose work has been influential among AI workers in knowledge representation. The idea
is that all sentences can be analysed as an action plus a number of objects filling the roles in the
action, with there being a fixed set of roles (though not every role will always be filled). Other
roles suggested as fundamental include the locative indicating where the action is done, and the
instrumental, indicating the means by which an action is done.
In some natural languages the different roles which a word may fill are indicated by the ending or
inflexion of the word. A well-known example of such an inflexional language is Latin (but some
modern languages, such as Russian are equally as inflexional), where, for example “Dog bites man”
is “Canis hominem mordet” while “Man bites dog” is “Homo canem mordet”. The word for “dog” is
“canis” if it is the object of the sentence, but “canem” if it is the subject, while for “man” it is “homo”
if he is the object of the sentence and “hominem” if he is the subject. If something were being given
to a dog, the word used would be “cane”, if a dog were being used for something the word used would
be “cani”. In English the objective and subjective roles are indicated by word order, with the object
coming before the verb and the object coming after. In Latin, it is the case endings, not the word order
that indicates a role, so “Hominem canis mordet” is just another way of saying “Dog bites man”. You
could perhaps compare it the programming languages where the relationship of arguments to
formal parameter names in procedure calls may be indicated by their position, but in some cases
(e.g. Modula-3) a facility is available for named arguments.
In English the dative is occasionally indicated by word order (for example in “John gave Mary the
book”), but more often by prefixing the word indicating the dative item with the preposition “to”,
as in “John gave the book to Mary”. Other cases are always indicated by prepositions, for example
the locative with “at” (e.g. “John gave the book to Mary at school”) and the instrumental with
“by” or “with” (“John sent the book to Mary by post”, “Mary hit John with the book”). Most
inflexional languages have a limited range of cases, and use prepositions to extend the range. In fact
the argument for case as innate is damaged by the fact that different languages have different case
structures, and it is by no means certain which cases are fundamental and which are just variants of
others. For example, in sentences involving the concept of movement linguists distinguish the
ablative case (the source of the movement, in English indicated by the preposition “from”) and the
al lat ive case (the destination of the movement), but should the latter be considered just another
form of the dative role?
Using the concept of a semantic network in which nodes represent individual actions, with arcs
representing objects having roles in these actions, it is possible to build up complex graphs
representing complete scenarios. For example, the story:
“John gave Mary a book. The book was not the one Mary likes, so she punched John. That made her
feel sorry for him, so she then kissed him”
is represented by the graph on the next page. The class nodes are omitted as the graph is complex
enough without them. The arcs are labelled with sub and obj , for the subject and object of the
action, ind.obj and instr for the case where there is an indirect object (i.e. dative in the
terminology used previously) and an instrument. There are also arcs representing time relationships
– note that individual times are represented by nodes as well, and reasons why an act was
performed.
Note that in the graph some English words are translated to an equivalent, thus “punch” is
represented as “hit with fist” (we might also, for example, have represented “kiss” by “touch with
lips”, though this perhaps illustrates why this sort of attempt to find an underlying representation
can miss some of the subtleties of human language!). Similarly, if we are trying to represent
underlying meanings, we have not only to convert passive forms to active forms as suggested
previously, but also to note forms where one verb is equivalent to another, except with the roles in a
different order. For example, the sentence “X buys Y from Z” is essentially equivalent to “Z sells Y
to X”, so we could therefore convert all sentences involving selling to the equivalent involving
buying and make them instances of the buying class. Work on trying to find underlying primitives to
aid network representation of the meaning of natural language semantics is associated with the AI
researcher Roger Schank.

AI 1 Notes on semantic nets and frames 1996. Page 6

John MaryBook1 Time1

give1

Unequal1

Time2

Fist1

Hit1

Belongs1

Sorry1

Time3

After2

Time4

After3

Kiss1

sub

obj

time

sub

obj

sub

obj

sub

obj

sub

obj

reason

subobj

ind.obj

obj

sub

sub

obj

inst

reason

sub

obj

sub

obj

reason

time

time

time

time

Always

After1

Book2

Likes1

The information in this graph could be represented by a series of logical facts like the set of Prolog
facts we gave as the first representation of the previous graph. The advantage of the graph
notation is that it may be more intuitive, and in particular it brings together all the information
associated with a particular individual. Drawing inferences from a semantic net involves searching
for particular patterns. For example, the question “Who kissed John?” from the above graph
involves searching for a node which links to the class node kissings with an is_a link (this is
one of the links not shown), and has an object link to the node representing John. The answer to the
question is then found from the subject link of that node. In Prolog this would be the query:
is_a(K,kissings), object(K,john), subject(K,Answer).

Note that the graph may represent a scenario where John is kissed more than once, in which case
there would be more than one node fitting the conditions, and the query could be made to backtrack
to give alternate answers.
A “whom” question is a search for the object of a node given the subject, thus “Mary kissed whom?”
(modern English is more likely to phrase this “Who did Mary kiss?”, the distinction between
“who” as a query for a subject and “whom” as a query for an object being lost) is represented by:
is_a(K,kissings), subject(K,mary), object(K,Answer).

Similarly a “to whom” question is a search for an indirect object given a subject and object, so “John
gave the book to whom?” or “Who did John give the book to?” is represented by:
is_a(G,givings), subject(G,john), object(G,B), is_a(B,book),

indirect_object(B,Answer).
A “how” question might be considered equivalent to a “with what” question, so it is returns the
instrumental link of the relevant node. A “where” question returns the locative link.
A “why” question is a search for a reason link, so “Why did Mary kiss John?” is represented by:
is_a(K,kissings), subject(K,mary), object(K,john), reason(K,Answer)

AI 1 Notes on semantic nets and frames 1996. Page 7

In this case, however, the answer will not be an individual but simply a name assigned to an node
representing a feeling_sorry_for action. A more correct report would need to give the complete
sentence represented by the node to which the reason link points.
Similarly, a “when” question is a search for a time link. Time links may point to nodes actually
storing times and dates. However, as in our example, it is more likely to be a time which is relative
to another, so again the answer given must involve looking beyond just the node pointed to by the
time link. For example, with our above graph the question “When did Mary feel sorry for John”
would be answered by finding that the time link from the node sorry1 links to time time3 . It can
then be noted that time3 is the subject of one after node, and the object of another, so the answer
could be given as both “After Mary hit John” and “Before Mary kissed John”. If two different action
nodes pointed to the same time node, the time of the action of one could be given as when the other
happened, so for example with the graph below:

Seeing Hearing

Tom

Jill

See1 Heard1Time1

Peter

Sue

is_a is_a

TimeTime
Subject

Object

Subject

Object

the question “When did Tom see Jill?” could be answered “When Peter heard Sue”. Note that a
simplification we are making here is that all actions occur instantly at a fixed time point. A more
realistic treatment of time would deal with time intervals which have a start and finish time.

Frames, Slots and Fillers
Consideration of the use of cases suggests how we can tighten up on the semantic net notation to give
something which is more consistent, known as the frame notation. In the place of an arbitary number
of arcs leading from a node there are a fixed number of slots representing attributes of an object.
Every object is a member or instance of a class, which it may be thought of as linking to with an
is_a link as we saw before. The class indicates the number of slots that an object has, and the name
of each slot. In the case of a giving object, for instance, the class of giving objects will indicate tha t
it has at least three slots: the donor, the recipient and the gift. There may be further slots
indicated as necessary in the class, such as ones to give the time and location of the action. The time
slot may be considered a formalisation of the tense of the verb in a sentence.
The idea of inheritance is used, with some slots being filled at class level, and some at instance
level. Where a slot is filled at class level the idea is that this represents attributes which are
common to all members of that class. Where it is filled at instance level, it indicates that the value
of that attribute varies among members of that class. Slots may be filled with values or with
pointers to other objects. This is best illustrated by an example.
In our example we have a general class of birds , and all birds have attributes flying ,
feathered and colour . The attributes flying and feathered are boolean values and are fixed
to true at this level, which means that for all birds the attribute flying is true and the
attribute feathered is true . The attribute colour , though defined at this level is not filled,
which means that though all birds have a colour, their colour varies. Two subclasses of birds,
pet_canaries and ravens are defined. Both have the colour slot filled in, pet_canaries with
yellow , ravens with black . The class pet_canaries has an additional slot, owner , meaning
that all pet canaries have an owner, though it is not filled at this level since it is obviously not the
case that all pet canaries have the same owner. We can therefore say that any instance of the class
pet_canary has attributes colour yellow , feathered true , flying true , and owner , the last
of these varying among instances. Any instance of class raven has colour black , feathered
true , flying true , but no attribute owner . The two instances of pet_canary shown, Tweety and

AI 1 Notes on semantic nets and frames 1996. Page 8

Cheepy have owners John and Mary who are separate instances of the class person , for simplicity
no attributes have been given for class person . The instance of pet_canary Cheepy has an
attribute which is restricted to itself, vet (since not all pet canaries have their own vet), which is
a link to another person instance, but in this case we have subclass of person, vet . The frame
diagram for this is:

Pet
Canaries

Colour

Owner

Yellow
Colour BlackRavens

Flying

Feathered

Colour

Birds

T

T

Tweety Owner

Owner
CheepyJohn

Mary

Edgar

Person

is_a

is_a

is_a

owner

owneris_a

is_a

Vet Sally

Vet

Vet

is_a

a_kind_ofa_kind_of

a_kind_of

We can define a general set of rules for making inferences on this sort of frame system. We can say
that an object is an instance of a class if it is a member of that class, or if it is a member of a class
which is a subclass of that class. A class is a subclass of another class if it is a kind of that class, or
if it is a kind of some other class which is a subclass of that class. An object has a particular
attribute if it has that attribute itself, or if it is an instance of a class that has that attribute. In
Prolog:
aninstance(Obj,Class) :– is_a(Obj,Class).

aninstance(Obj,Class) :– is_a(Obj,Class1), subclass(Class1,Class).

subclass(Class1,Class2) :– a_kind_of(Class1,Class2).

subclass(Class1,Class2) :– a_kind_of(Class1,Class3), subclass(Class3,Class2).

We can then say that an object has a property with a particular value if the object itself has an
attribute slot with that value, or it is an instance of a class which has an attribute slot with tha t
value, in Prolog:
value(Obj,Property,Value) :– attribute(Obj,Property,Value).

value(Obj,Property,Value):–
aninstance(Obj,Class), attribute(Class,Property,Value).

The diagram above is represented by the Prolog facts:

AI 1 Notes on semantic nets and frames 1996. Page 9

attribute(birds,flying,true).

attribute(birds,feathered,true).

attribute(pet_canaries,colour,yellow).

attribute(ravens,colour,black).

attribute(tweety,owner,john).

attribute(cheepy,owner,mary).

attribute(cheepy,vet,sally).

a_kind_of(pet_canaries,birds).

a_kind_of(ravens,birds).

a_kind_of(vet,person).

is_a(edgar,ravens).

is_a(tweety,pet_canaries).

is_a(cheepy,pet_canaries).

is_a(sally,vet).

is_a(john,person).

is_a(mary,person).

Note in particular how we have used reification leading to a representation of classes like birds ,
pet_canaries and so on by object constants, rather than by predicates as would be the case if we
represented this situation in straightforward predicate logic. The term superclass may also be used,
with X being a superclass of Y whenever Y is a subclass of X.
Using the Prolog representation, we can ask various queries about the situation represented by the
frame system, for example if we made the Prolog query:
| ?- value(tweety,colour,V).

we would get the response:
V = yellow ?

while
| ?- value(john,feathered,V).

gives the response
no

indicating that feathered is not an attribute of John. Note that the no indicates that this is
something which is not recorded in the system. If we wanted to actually store the information tha t
persons are not feathered we would have to add:
attribute(person,feathered,true).

then the response would have been:
V = false ?

The only thing that has not been captured in this Prolog representation is the way that an attribute
can be defined at one level and filled in lower down, like the colour attribute of birds .

Demons and Object-Oriented Programming
Some frame systems have an additional facility in which a slot may be filled not by a fixed
attribute but by a procedure for calculating the value of some attribute. This procedure is known as a
demon (the name coming from the idea that it “lurks around waiting to be invoked”). A demon may
be attached to a class, but make use of information stored in a subclass or an instance.
For instance, in the above example, we might want to have an attribute maintenance representing
maintenance costs attached to the subclass pet_canaries , which should return £5 for a pet canary
without its own vet, but £5+vet’s fees for a canary with a vet. However, if we do this we will need
to have a way to refer to the individual instance of a class at the class level. We do this through

AI 1 Notes on semantic nets and frames 1996. Page 10

the use of a variable conventionally called Self . We then need to add the reference to Self to our
rules for determining the value of some property:
value(Obj,Property,Value) :– attribute(Obj,Obj,Property,Value).

value(Obj,Property,Value):–

aninstance(Obj,Class), attribute(Obj,Class,Property,Value).

The first argument to attribute here is the reference to Self . Our previous attributes do not depend
on the value of Self , so we can just add it as an anonymous variable:
attribute(_,birds,flying,true).

attribute(_,pet_canaries,colour,yellow).

and so on for the other attributes. For our example, we must have the attribute fees attached to vets
(it will vary from vet to vet so it will be filled in at instance level), so we will also add to our
example:
attribute(_,sally,fees,20).

Now, to add our demon, which we will name eval_maintenance , we add:
attribute(Self,pet_canaries,maintenance,Costs) :– eval_maintenance(Self,Costs).

eval_maintenance(Self,Costs) :–
value(Self,vet,SelfsVet), !,
value(SelfsVet,fees,VetFees),
Costs is VetFees+5.

eval_maintenance(Self,5).

The use of the cut here is because the only way we can find out if a pet canary doesn’t have a vet is
to see if fails, but we don’t want backtracking for a pet canary that does have a vet to give an
alternative value for maintenance costs.
The introduction of demons brings our knowledge representation method close to that of object-
oriented programming. Several object-oriented programming language have been developed which
give mechanisms directly for expressing classes with attached procedures and inheritance. The
most successful examples are C++ and Smalltalk. Development of the idea of demons into full
procedures which may change the values stored with an object moves away from the declarative
ideas of knowledge representation, so we shall not develop it further here, but those taking the
course in Object-Oriented Programming will be able to build the connection.

Defaults and Overrides
One of the problems we mentioned with predicate logic is that it does not provide us with a way of
saying that some particular conclusion may be drawn unless we can show otherwise. We had to add
the idea of negation as failure to deal with this, and even then if we want to draw a conclusion we
have to show that all the conditions that would cause that conclusion to fail are false.
For example, we know that in general birds can fly. So we can write in Prolog:
flies(X) :– bird(X).

But suppose we want to deal with special cases of birds that cannot fly. We know that kiwis and
penguins cannot fly, for instance. We also know that any bird with a broken wing cannot fly. So
strictly we would have to say:
flies(X) :– bird(X), \+kiwi(X), \+penguin(X), \+broken_wing(X).

We can summarise this as:
flies(X) :– bird(X), \+ab(X).

where ab(X) means “X is an abnormal bird”. We could list the factors that make X an abnormal
bird in respect to flying:
ab(X) :– kiwi(X).

ab(X) :– penguin(X).

ab(X) :– broken_wing(X).

AI 1 Notes on semantic nets and frames 1996. Page 11

but there might always be circumstances we had not thought of (other species of birds that don’t
fly, birds whose wings are not broken but whose feet are trapped, etc.). As we mentioned in a
previous set of notes forms of default logic exist which enable us to say that some conclusion holds on
the assumption that there are no facts known to indicate why they should not. So we might say
that bird(x) is true with assumption set {¬ab(x)} . This is non-monotonic reasoning, since the
addition of a fact which makes some assumption false will make a conclusion false. For example, i f
we have ostrich(ossie) and bird(X):–ostrich(X) we can assume flies(ossie) , but if we
add ab(X):–ostrich(X) , this reasoning fails. In practice there will have to be a separate form of
ab for every rule.
Another way of putting this is to say that the default is for any bird x , flies(x) is true.
Default reasoning is easily added to the frame system of representation. The idea used is that an
attribute at class level is inherited only if it is not cancelled out or overridden by the same attribute
slot occurring in a subclass of that class or in an individual instance with a different value. For
example, we could add the class of kiwis as a subclass of birds in our diagram above, and indicate
that kiwis cannot fly. The additional attributes to create a class of kiwis with one instance kevin
are:
a_kind_of(kiwis,birds).

attribute(kiwis,flying,false).

attribute(kiwis,colour,brown).

is_a(kevin,kiwis).

We have to add a colour attribute for kiwis as this was a slot in its superclass, birds . For
simplicity we have gone back to the representation which does not allow for the possibility of
demons.
The following arcs are added to our diagram:

Flying

Feathered

Colour

Birds

T

T

Kiwis

Kevin

Flying

Colour Brown

F

is_a

ako

Now it will be seen that for X=tweety , cheepy or edgar ,
| ?- value(X,flying,V).
will give the response
V = true ?
but
| ?- value(kevin,flying,V).
will give the response
V = false ?
One problem is that if we typed ; in response to this we would get:
V = true ?

AI 1 Notes on semantic nets and frames 1996. Page 12

In order to prevent this possibility we need to put cuts in our inference rules, so that when the
property is found it is not possible to backtrack and search higher in the inheritance tree for a value
for the same property:
value(Obj,Property,Value) :– attribute(Obj,Property,Value), !.

value(Obj,Property,Value):–
 aninstance(Obj,Class), attribute(Class,Property,Value), !.

The presence of the cut indicates that we have lost the strict declarative reading, and the result we
get will depend on the ordering of the rules. This will become more apparent when we consider
multiple inheritance next.
The result of adding the possibility of overrides is that the information stored at class level no
longer represents attributes held by all members of that class, but can be taken as being the
attributes held by the typical member of that class. Sometimes the class level node in the
inheritance tree is said to represent the prototype member of that class. All new instances of tha t
class are constructed by taking the prototype and altering the defaults as required.
In order to establish coherency, sometimes a distinction is made between defining attributes which
cannot be overridden, and default attributes which can. Any attempt to add a node to the
inheritance graph which overrode a defining attribute would be flagged as an error. Without this
feature it would, for example, be possible to define a subclass in which all the attributes of a
superclass are overridden.

Multiple Inheritance
We have not said anything that indicates that an object may not be an instance of more than one
class, or a class be a subclass of more than one class. In fact this can easily be done within our
existing system simply by not insisting that every fact is_a(X,Y) or a_kind_of(X,Y) has a
unique value for X. This is described as multiple inheritance. Again, let us consider an example,
slightly different from the one above. We will again be representing information about pet
canaries, but this time we will have a separate class of pets and a class of canaries . The class of
pet canaries inherits properties from both pets and canaries . We will assume that pets have the
default property of being cute, birds have the fault property of flying, and canaries the default
properties of being coloured yellow, and making the sound cheep. For comparison, we will also add
a class of pet dogs. All dogs have the default property that the sound they make is a bark. To
illustrate a default being overridden we include the class of Rottweilers , a subclass of pet_dogs
where the property that cute is true is overridden by cute being false . The diagram is:

AI 1 Notes on semantic nets and frames 1996. Page 13

Pet
Canaries

Birds Flying T

Dogs Pets
Cute

Owner

T

Sound Bark

Pet
Dogs

Rottweilers Cute F

TweetyFido

John

Bill
Person

Spike

Owner

Colour Yellow
Canaries

Sound Cheep

ako

ako ako
ako

ako ako

is_a
owner

is_a

is_a

owner

ako

We have also added that John is the default owner of any pet, so any pet whose owner we don’t
know we assume is John’s.
The Prolog facts representing this set up are:
 attribute(birds,flying,true).
 attribute(dogs,sound,bark).
 attribute(pets,cute,true).
 attribute(pets,owner,john).
 attribute(canaries,colour,yellow).
 attribute(canaries,sound,cheep).
 attribute(rottweilers,cute,false).
 attribute(fido,owner,bill).

 a_kind_of(canaries,birds).
 a_kind_of(pet_canaries,canaries).
 a_kind_of(pet_canaries,pets).
 a_kind_of(pet_dogs,dogs).
 a_kind_of(pet_dogs,pets).
 a_kind_of(rottweilers,pet_dogs).

 is_a(tweety,pet_canaries).
 is_a(spike,rottweilers).
 is_a(fido,pet_dogs).
 is_a(john,person).
 is_a(bill,person).

If these are loaded into Prolog, together with the inference rules, it will be seen that multiple
inheritance works. We have:
| ?- value(fido,sound,S).

S = bark ?

showing that fido inherits the sound bark from dogs ,

AI 1 Notes on semantic nets and frames 1996. Page 14

| ?- value(fido,cute,V).

V = true?

showing that fido inherits the cute is true from pets ,
| ?- value(spike,cute,V).

V = false?

showing that the cute is true property of pet_dogs is overridden in the rottweiler spike .
Note that overrides may themselves be overridden. For example, in a classification of animals,
molluscs typically have the property that they have shells. Cephalopods (octopuses and squids)
are a subclass of mollusc which typically do not have shells, so the property has_shell=true is
overridden. Nautiluses, however are a subclass of cephalopods which typically do have shells, so
the property is again overridden. This can easily be represented, in Prolog facts:
attribute(molluscs,has_shell,true).

attribute(cephalopods,has_shell,false).

attribute(nautiluses,has_shell,true).

a_kind_of(cephalopods,molluscs).

a_kind_of(nautiluses,cephalopods).

A more tricky situation happens when with multiple inheritance an instance or a subclass inherits
one property from one superclass and a contradictory property from another. This is often referred to
as the “Nixon diamond” property, as it is frequently illustrated by the case of Richard Nixon being
both a Quaker (a group whose members typically hold pacifist views) and a Republican (a group
whose members typically do not hold pacifist views). As a similar example building from our
previous examples, let us consider the case of pet spiders. As before we assume that pets are
typically cute, but we will also assume that spiders are not typically cute. So are pet spiders
typically cute or not?

Spiders Cute F Pets Cute T

Pet
Spiders

Webster

ako ako

is_a

In our Prolog representation, the answer will depend on the ordering of the clauses. If we have the
ordering
ako(pet_spiders,spiders).

ako(pet_spiders,pets).

then using the rules defined above, we would get:
| ?- value(webster,cute,V).

V = false ?

whereas if the order were
ako(pet_spiders,pets).

ako(pet_spiders,spiders).

we would get:

AI 1 Notes on semantic nets and frames 1996. Page 15

| ?- value(webster,cute,V).

V = true ?

The reason for this is that the search for the cute attribute is a search through a tree with multiple
inheritance, and our search rules if run under standard Prolog will use Prolog’s depth-first left-to-
right search of the tree. So if we list the fact that pet_spiders are a kind of spider before the
fact that they are a kind of pet , the spider superclass will be searched for some attribute first,
and vice versa. This is obviously a naïve way of solving the problem, more detailed discussion could
be given about it, but at this stage it is sufficient to know of the problem. One difficulty, for
example occurs if we want pet_spiders to inherit some conflicting attributes from pets and
others from spiders . The way to resolve this is to specify default values for those attributes a t
the pet_spiders level.
Note that inheritance hierarchies with multiple inheritance can form graphs, since it is possible
for something to be a subclass of two separate classes which are themselves subclasses of a single
class. Consider for example

A

B C

D

E p v

Large tree

In this case, class D multiply inherits from B, C and E with B and C having common superclass A. A
further inherits from some large tree of superclasses. Suppose that property p is only found in class
E. It will not be found in the search of the large tree. If we are searching for the p value of D, our
naïve search would unnecessarily search the large tree twice, not find any reference to property p
and only then look at E. In practice then, we would need to consider some of the graph search
methods we considered earlier. We might also consider, for example, whether say a breadth-first
search of the graph would be more appropriate than Prolog’s built-in depth-first search.

Scripts
Scripts are a development of the idea of representing actions and events using semantic networks
which we described above. With scripts the idea is that whole set of actions fall into stereotypical
patterns. Scripts make use of the idea of defaults, with a class defining the roles in some action, and
individual instances of the class having the roles filled in. This has been suggested as a way of
analysing complete stories. For example, previously we had the story
.“John gave Mary a book. The book was not the one Mary likes, so she punched John. That made her
feel sorry for him, so she then kissed him”.
This may be considered an instance of the script
“A did action α for B. B didn’t like α, so he/she/it/they did action β to hurt A. B then came to an
agreement with A and did action γ to make up”.

AI 1 Notes on semantic nets and frames 1996. Page 16

In our previous example, A was John, B was Mary, α was giving the wrong book, β was punching, and
γ was kissing. In another instance of the same script, A could be the factory managers, B the factory
workers, α could be cutting tea-break time, β could be going on strike, and γ could be agreeing to
accept a bonus payment.

Agent A

Agent B

Action α

Action β

Action γ

"Settling a
disagreement"

Agent A

Agent B

Action α

Action β

Action γ

Story 2

John

Mary

Giving
wrong
book

Punching

Kissing

Managers

Agent A

Agent B

Action α

Action β

Action γ

Workers

Cut tea
breaks

Go on
strike

Accept
bonus pay

a_kind_of
a_kind_of

Story 1

The idea is that information on general points will be stored at the class level, which will enable
us to answer questions on a variety of stories by relating them to a common theme.

Further Reading
A good coverage of the issues in this section is contained in:
H.Reichgelt Knowledge Representation: An AI Perspective Ablex Publishing Corporation 1991.
A collection of reprints of original papers on the subject is:
R.J.Brachman and H.J.Levesque Readings in Knowledge Representation Morgan Kaufmann 1985.
The subject in the context of object-oriented programming in:
G.Masini et al Object Oriented Programming Languages Academic Press 1991.
Further reading following from the section “The Case for Case” may be found in books on natural
language processing, particularly those books with a good coverage of the semantic issues (many
books on natural language processing are more concerned with the syntax i.e. saying whether a
given sentence is grammatically correct or not, rather than the semantics i.e. determining the
meaning of the sentence). Two books with a good coverage of semantics are:
M.D.Harris Natural Language Processing Prentice-Hall 1985.
J.Allen Natural Language Understanding Benjamin/Cummings 1987.

