BIOINFORMATIKA:

Perkembangan, Disiplin Ilmu dan Penerapannya di Indonesia

Dwi Astuti Aprijani M. Abdushshomad Elfaizi

Lisensi

Hak Cipta © 2004 oleh M. Abdushshomad Elfaizi dan Dwi Astuti Aprijani Silakan menyalin, mengedarkan, dan/atau, memodifikasi bagian dari dokumen – \$Revision: 1.1.0.0 \$ — yang dikarang oleh M. Abdushshomad Elfaizi dan Dwi Astuti Aprijani, sesuai dengan ketentuan "GNU Free Documentation License versi 1.1" atau versi selanjutnya dari FSF (Free Software Foundation); tanpa bagian "Invariant", tanpa teks "Halaman Judul", dan tanpa teks "Halaman Sampul Belakang". Salinan lengkap dari lisensi tersebut dapat dilihat di http://www.gnu.org/copyleft/fdl.html. Ketentuan ini TIDAK berlaku untuk bagian dan/atau kutipan yang bukan dikarang oleh M. Abdushshomad Elfaizi dan Dwi Astuti Aprijani.

Abstrak

Bioinformatika merupakan kajian yang memadukan disiplin biologi molekul, matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi molekul. Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari kehidupan dalam level molekul.

Mula-mula bidang kajian ini muncul atas inisiatif para ahli biologi molekul dan ahli statistik, berdasarkan pola pikir bahwa semua gejala yang ada di alam ini bisa dibuat secara *artificial* melalui simulasi dari data-data yang ada. Pada bidang Bioinformatika, data-data atau tindak-tanduk gejala genetika menjadi inti pembentukan simulasi.

Pada saat ini, Bioinformatika ini mempunyai peranan yang sangat penting, diantaranya adalah untuk manajemen data-data biologi molekul, terutama sekuen DNA dan informasi genetika . Perangkat utama Bioinformatika adalah software dan didukung oleh kesediaan internet.

Bioinformatika mempunyai peluang yang sangat besar untuk berkembang karena banyak sekali cabang-cabang ilmu yang terkait dengannya. Namun sayangnya di Indonesia sendiri Bioinformatika masih belum dikenal oleh masyarakat luas. Di kalangan peneliti biologi, mungkin hanya para peneliti biologi molekul yang mengikuti perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika untuk analisa data. Sementara di kalangan TI --mengingat kuatnya disiplin biologi yang menjadi pendukungnya-- kajian ini juga masih kurang mendapat perhatian. Paper ini bertujuan untuk lebih mengenalkan Bioinformatika di kalangan TI dan masyarakat luas.

Keyword: bioinformatika, genom, sekuen, teknik informasi (TI).

BABI

PENDAHULUAN

1.1. Latar Belakang Sejarah

Penetrasi Teknologi Informasi (TI) dalam berbagai disiplin ilmu telah melipatgandakan perkembangan ilmu bersangkutan. Berbagai kajian baru bermunculan, sejalan dengan perkembangan TI itu sendiri dan disiplin ilmu yang didukungnya. Aplikasi TI dalam bidang biologi molekul telah melahirkan bidang Bioinformatika. Kajian ini semakin penting, sebab perkembangannya telah mendorong kemajuan bioteknologi di satu sisi, dan pada sisi lain memberi efek domino pada bidang kedokteran, farmasi, lingkungan dan lainnya.

Kajian baru Bioinformatika ini tak lepas dari perkembangan biologi molekul modern yang ditandai dengan kemampuan manusia untuk memahami genom, yaitu cetak biru informasi genetik yang menentukan sifat setiap makhluk hidup yang disandi dalam bentuk pita molekul DNA (asam deoksiribonukleat). Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh TI melalui perangkat perangkat keras maupun lunak. Hal ini bisa dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan TI sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun), dibanding usaha konsorsium lembaga riset publik AS, Eropa, dan lain-lain, yang memakan waktu lebih dari 10 tahun.

Kelahiran Bioinformatika modern tak lepas dari perkembangan bioteknologi di era tahun 70-an, dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan teknologi DNA rekombinan. Berkat penemuan ini lahirlah perusahaan bioteknologi pertama di dunia, yaitu Genentech di AS, yang kemudian memproduksi protein hormon insulin dalam bakteri, yang dibutuhkan penderita diabetes. Selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi.

Bioteknologi modern ditandai dengan kemampuan pada manipulasi DNA. Rantai/sekuen DNA yang mengkode protein disebut gen. Gen ditranskripsikan menjadi mRNA, kemudian mRNA ditranslasikan menjadi protein. Protein sebagai produk akhir bertugas menunjang seluruh proses kehidupan, antara lain sebagai katalis reaksi biokimia dalam tubuh (disebut enzim), berperan serta dalam sistem pertahanan tubuh melawan virus, parasit dan lain-lain (disebut antibodi), menyusun struktur tubuh dari ujung kaki (otot terbentuk dari protein actin, myosin, dan sebagainya) sampai ujung rambut (rambut tersusun dari protein keratin), dan lain-lain. Arus informasi, DNA -> RNA -> Protein, inilah yang disebut sentral dogma dalam biologi molekul.

Sekuen DNA satu organisme, yaitu pada sejenis virus yang memiliki kurang lebih 5.000 nukleotida/molekul DNA atau sekitar 11 gen, berhasil dibaca secara menyeluruh pada tahun 1977. Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Di Indonesia, ada Lembaga Biologi Molekul Eijkman yang terletak di Jakarta. Di sini kita bisa membaca sekuen sekitar 500 nukleotida hanya dengan membayar \$15. Trend yang sama juga nampak pada database lain seperti database sekuen asam amino penyusun protein, database struktur 3D protein, dan sebagainya. Inovasi teknologi DNA chip yang dipelopori oleh perusahaan bioteknologi AS, Affymetrix di Silicon Valley telah mendorong munculnya database baru mengenai RNA.

Desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNA maupun protein inilah yang semakin memacu perkembangan kajian Bioinformatika.

1.2. Contoh-contoh Penggunaan

1.2.1. Bioinformatika dalam Bidang Klinis

Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis (*clinical informatics*). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui *Electrical Medical Record* (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa

menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.

1.2.2. Bioinformatika untuk Identifikasi Agent Penyakit Baru

Bioinformatika juga menyediakan *tool* yang sangat penting untuk identifikasi *agent* penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang muncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (Severe Acute Respiratory Syndrome).

Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri *Candida* karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus *Corona* jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus *Corona* yang telah berubah (mutasi) dari virus *Corona* yang ada selama ini.

Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus *Corona*. Karena di *database* seperti GenBank, EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus *Corona*, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial. Contoh yang gratis adalah *Webprimer* yang disediakan oleh Stanford Genomic Resources (http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer), *GeneWalker* yang disediakan oleh Cybergene AB (http://www.cybergene.se/primerdisain/genewalker), dan lain sebagainya. Untuk yang komersial ada *Primer Disainer* yang dikembangkan oleh Scientific & Education Software, dan software-software untuk analisa DNA lainnya seperti *Sequencher* (GeneCodes Corp.), *SeqMan II* (DNA STAR Inc.), *Genetyx* (GENETYX Corp.), *DNASIS* (HITACHI Software), dan lain lain.

Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini diketahui dengan menggunakan homology alignment dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.

1.2.3. Bioinformatika untuk Diagnosa Penyakit Baru

Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien.

Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi *agent* penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik *enzyme-linked immunosorbent assay* (ELISA), dan deteksi gen dari *agent* pembawa penyakit tersebut dengan *Polymerase Chain Reaction* (PCR).

Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom *agent* yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan peranannya. Untuk *agent* yang mempunyai genom RNA, harus dilakukan *reverse transcription* (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim *reverse transcriptase*. Setelah DNA diperoleh baru dilakukan PCR. *Reverse transcription* dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.

Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu dikembangkan teknik lain, yaitu *Real Time* PCR yang bersifat kuantitatif. Dari hasil *Real Time* PCR ini bisa ditentukan kuantitas suatu *agent* di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada *Real Time* PCR ini selain primer diperlukan *probe* yang harus didisain sesuai dengan sekuen *agent* yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika.

1.2.4. Bioinformatika untuk Penemuan Obat

Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu *agent* penyebab penyakit. Karena perkembangbiakan *agent* tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu *agent* Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang dapat menekan fungsi dari enzim-enzim tersebut.

Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik amino-nya ada di **SWISS-PROT** data sekuen asam seperti yang (http://www.ebi.ac.uk/swissprot/) maupun struktur 3D-nya yang tersedia di Protein Data Bank (PDB) (http://www.rcsb.org/pdb/). Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.

Setelah asam amino yang berperan sebagai *active site* dan kestabilan enzim tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk *active site*-nya, sehingga bisa diperkirakan bentuk senyawa yang akan berinteraksi dengan *active site* tersebut. Dengan demikian, kita cukup mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan "*docking*" dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.

Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulu melalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua proses ini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun finansial.

Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.

BAB II

PENGERTIAN DAN CABANG-CABANG ILMU BIOINFORMATIKA

Pada bagian pendahuluan kita telah diberikan gambaran sekilas mengenai perkembangan dan apa yang dapat diberikan oleh Bioinformatika. Bagian berikut ini akan membahas lebih detail tentang Bioinformatika.

Secara umum, Bioinformatika dapat digambarkan sebagai: segala bentuk penggunaan komputer dalam menangani informasi-informasi biologi.

Dalam prakteknya, definisi yang digunakan oleh kebanyakan orang bersifat lebih terperinci. Bioinformatika menurut kebanyakan orang adalah satu sinonim dari komputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponen-komponen molekul dari makhluk hidup).

2.1. Pengertian Secara Khusus

2.1.1. Bioinformatika "klasik"

Sebagian besar ahli Biologi mengistilahkan 'mereka sedang melakukan Bioinformatika' ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia --asam nukleat-dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika "klasik", terutama berurusan dengan analisis sekuen (*sequence analysis*).

Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: "metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya."

Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagian-bagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain.

Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik.

Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut *macromolecule*. *Macromolecule* dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu.

Berdasarkan skema di atas, monomer-monomer tertentu dalam *macromolecule* dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.

Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi "klasik" yang telah disebutkan di atas.

2.1.2. Bioinformatika "baru"

Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (*Human Genome Project*). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan --terutama oleh ahli biologi-bahwa kita saat ini berada di masa pascagenom.

Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya:

Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (*comparative genomics*).

Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti *DNA microarrays* akan semakin penting.

Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode *yeast two-hybrid*) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (*functional genomics*).

Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.

Apa yang disebut orang sebagai *research informatics* atau *medical informatics*, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu --mulai dari spektroskop massal, hingga ke efek samping klinis-- akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.

Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika "klasik" maupun Bioinformatika "baru".

2.2. Cabang-cabang yang Terkait dengan Bioinformatika

Dari pengertian Bioinformatika baik yang klasik maupun baru, terlihat banyak terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika --terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner--. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.

2.2.1. Biophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari *biophysics*. *Biophysics* adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (*British Biophysical Society*).

Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

2.2.2. Computational Biology

Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit.

Tidak semua dari *computational biology* merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

2.2.3. Medical Informatics

Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari *medical informatics* adalah "sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis."

Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih "rumit" --yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

2.2.4. Cheminformatics

Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute's Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.

Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obat-obatan hingga sekarang --meskipun terlihat aneh--. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (*trial-error process*). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponen-komponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari *cheminformatics*.

Ruang lingkup akademis dari *cheminformatics* ini sangat luas. Contoh bidang minatnya antara lain: *Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.*

2.2.5. Genomics

Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

2.2.6. Mathematical Biology

Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu "menyelesaikan" masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu.

Menurut Alex Kasman [KASMAN2004] Secara umum *mathematical biology* melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

2.2.7. Proteomics

Istilah *proteomics* pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (*encoded*) oleh genom. Ilmu yang mempelajari *proteome*, yang disebut *proteomics*, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan

modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom.

Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari *Proteomics* mendefiniskan kata "*proteome*" sebagai: "*The PROTEin complement of the genOME*". Dan mendefinisikan *proteomics* berkaitan dengan: "studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri". Yaitu: "sebuah antarmuka antara biokimia protein dengan biologi molekul".

Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu --apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut-- melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

2.2.8. Pharmacogenomics

Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).

Istilah *pharmacogenomics* digunakan lebih untuk urusan yang lebih "trivial" -- tetapi dapat diargumentasikan lebih berguna-- dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

2.2.9. Pharmacogenetics

Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. *Pharmacogenetics*

adalah bagian dari pharmacogenomics menggunakan metode yang genomik/Bioinformatika mengidentifikasi hubungan-hubungan untuk genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk "menghidupkan kembali" obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu.

Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

BAB III

TEKNOLOGI DAN PENERAPAN BIOINFORMATIKA

3.1. Program-program Bioinformatika

Sehari-harinya bionformatika dikerjakan dengan menggunakan program pencari sekuen (*sequence search*) seperti BLAST, program analisa sekuen (*sequence analysis*) seperti EMBOSS dan paket Staden, program prediksi struktur seperti THREADER atau PHD atau program *imaging/modelling* seperti RasMol dan WHATIF.

Contoh-contoh di atas memperlihatkan bahwa telah banyak program pendukung yang mudah di akses dan dipelajari untuk menggunakan Bioinformatika

3.2. Teknologi Bioinformatika Secara Umum

Pada saat ini banyak pekerjaan Bioinformatika berkaitan dengan teknologi database. Penggunaan database ini meliputi baik tempat penyimpanan database "umum" seperti GenBank atau PDB maupun database "pribadi", seperti yang digunakan oleh grup riset yang terlibat dalam proyek pemetaan gen atau database yang dimiliki oleh perusahaan-perusahaan bioteknologi. Konsumen dari data Bioinformatika menggunakan platform jenis komputer dalam kisaran: mulai dari mesin UNIX yang lebih canggih dan kuat yang dimiliki oleh pengembang dan kolektor hingga ke mesin Mac yang lebih bersahabat yang sering ditemukan menempati laboratorium ahli biologi yang tidak suka komputer.

Database dari sekuen data yang ada dapat digunakan untuk mengidentifikasi homolog pada molekul baru yang telah dikuatkan dan disekuenkan di laboratorium. Dari satu nenek moyang mempunyai sifat-sifat yang sama, atau homology, dapat menjadi indikator yang sangat kuat di dalam Bioinformatika.

Setelah informasi dari database diperoleh, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasarkan pada hasil alignment / pensejajaran sekuen, baik sekuen DNA maupun protein. Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi

daripadanya. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST (Basic Local Alignment Search Tool) yang merupakan program pencarian kesamaan yang didisain untuk mengeksplorasi semua database sekuen yang diminta, baik itu berupa DNA atau protein. Program BLAST juga dapat digunakan untuk mendeteksi hubungan di antara sekuen yang hanya berbagi daerah tertentu yang memiliki kesamaan. Di bawah ini diberikan contoh beberapa alamat situs yang berguna untuk bidang biologi molekul dan genetika:

Deskripsi	Alamat
National Center for Biotechnology Information	http://www.ncbi.nlm.nih.gov/
GenBank (NIH Genetic Sequence Database)	http://www.ncbi.nlm.nih.gov/Web/Genbank/index/html
European Molecular Biology Laboratory Nucleotide Sequence	http://www.ebi.ac.uk/ebi_docs/embl_db.html
Protein Information Resource	http://www.nbrf.georgetown.edu/pir
Protein Data Bank	http://www.pdb.bnl.gov/
Restriction Enzyme Database	http://www.neb.com/rebase/rebase.html
National Center for Genome Research (NCGR)	http://www.ncgr.org/gpi/
GeneMark	http://www.dixie.biology.gatech.edu/GeneMark/eukhmm.cgi
Biotechnology Industry Organization (BIO)	http://www.bio.org

Data yang memerlukan analisa Bioinformatika dan mendapat banyak perhatian saat ini adalah data hasil DNA chip. Dengan perangkat ini dapat diketahui kuantitas dan kualitas transkripsi satu gen sehingga bisa menunjukkan gen-gen apa saja yang aktif terhadap perlakuan tertentu, misalnya timbulnya kanker, dan lain-lain.

BAB IV

KONDISI DAN PENERAPAN BIOINFORMATIKA DI INDONESIA

4.1. Kondisi Bioinformatika di Indonesia

Di Indonesia, Bioinformatika masih belum dikenal oleh masyarakat luas. Hal ini dapat dimaklumi karena penggunaan komputer sebagai alat bantu belum merupakan budaya. Bahkan di kalangan peneliti sendiri, barangkali hanya para peneliti biologi molekul yang sedikit banyak mengikuti perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika untuk analisa data. Sementara di kalangan TI masih kurang mendapat perhatian.

Ketersediaan database dasar (DNA, protein) yang bersifat terbuka/gratis merupakan peluang besar untuk menggali informasi berharga daripadanya. Database genom manusia sudah disepakati akan bersifat terbuka untuk seluruh kalangan, sehingga dapat digali/diketahui kandidat-kandidat gen yang memiliki potensi kedokteran/farmasi. Dari sinilah Indonesia dapat ikut berperan mengembangkan Bioinformatika. Kerjasama antara peneliti bioteknologi yang memahami makna biologis data tersebut dengan praktisi TI seperti programmer, dan sebagainya akan sangat berperan dalam kemajuan Bioinformatika Indonesia nantinya.

4.2. Penerapan Bioinformatika di Indonesia

Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.

Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:

4.2.1. Deteksi Kelainan Janin

Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri dan Ginekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit Cipto Mangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksi secara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.

Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).

Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasangan yang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak, sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.

Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasari talasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.

4.2.2. Pengembangan Vaksin Hepatitis B Rekombinan

Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain

itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.

4.2.3. Meringankan Kelumpuhan dengan Rekayasa RNA

Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini.

Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa.

Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian.

Teknologi rekayasa RNA seperti proses penyambungan (*slicing*) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.

BAB V

KESIMPULAN

Bioinformatika adalah teknologi pengumpulan, penyimpanan, analisis, interpretasi, penyebaran dan aplikasi dari data-data biologi molekul. Perangkat utama Bioinformatika adalah software dan didukung oleh kesediaan internet dan server World Wide Web (WWW).

Dengan Bioinformatika, data-data yang dihasilkan dari proyek genom dapat disimpan dengan teratur dalam waktu yang singkat dengan tingkat akurasi yang tinggi serta sekaligus dianalisa dengan program-program yang dibuat untuk tujuan tertentu. Sebaliknya Bioinformatika juga mempercepat penyelesaian proyek genom karena Bioinformatika memberikan program-program yang diperlukan untuk proses pembacaan genom ini.

Dalam dunia kedokteran, keberhasilan proyek genom ini membuka kemungkinan luas untuk menangani berbagai penyakit genetik serta memprediksi resiko terkena penyakit genetik. Juga dapat digunakan untuk mengetahui respon tubuh terhadap obat sehingga efektivitas pengobatan bisa ditingkatkan.

Karena Bioinformatika merupakan suatu bidang interdisipliner, maka Bioinformatika juga tidak bisa berdiri sendiri dan harus didukung oleh disiplin ilmu lain yang mengakibatkan saling bantu dan saling menunjang sehingga bermanfaat untuk kepentingan manusia. Bidang yang terkait dengan Bioinformatika diantaranya adalah *Biophysics*, *Computational Biology*, *Medical Informatics*, *Cheminformatics*, *Genomics*, *Mathematical Biology*, *Proteomics*, *Pharmacogenomics*.

Meskipun merupakan kajian yang masih baru, Indonesia telah berperan aktif dalam mengembangkan Bioinformatika ini. Ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, antara lain para peneliti dalam Lembaga Biologi Molekul Eijkman.

REFERENSI

[UTAMA2003] Utama, Andi (2003), *Peranan Bioinformatika dalam Dunia Kedokteran*, http://ikc.vlsm.org/populer/andi-bioinformatika.php per 1 Januari 2004.

[WITARTO2003] Witarto, Arief B. (2003), BIOINFORMATIKA: Mengawinkan Teknologi Informasi dengan Bioteknologi. Trendnya di Dunia dan Prospeknya di Indonesia

_____(2003) *Modul Pelatihan Bioteknologi*, Unit Penelitian Bioteknologi Perkebunan, Konsorsium Bioteknologi Indonesia, Wageningen University and Research Center, dan Stoas-Belanda.

[BIOINFORMATICS2004] BioInformatics.org: The Open-Access Institute, http://bioinformatics.org per 20 Januari 2004

[KOMPAS2004] Kompas Cyber Media, http://www.kompas.com per 15 Januari 2004

[BIOTEK2004] Situs Biotek-Indonesia, http://www.biotek-indonesia.net per 20 Januari 2004

[TEKAIA2004] Situs Institut Pasteur, http://www.pasteur.fr/externe per 20 Januari 2004

[ZAKARIA2004] *Medical Informatics FAQ*, http://www.faqs.org/faqs/medical-informatics-faq/ per 20 Januari 2004

[KASMAN2004] Situs Alex Kasman di College of Charleston, http://math.cofc.edu/faculty/kasman/ per 20 Januari 2004

[DUNN2004] Majalah Proteonomics,

http://www.wiley.co.uk/wileychi/genomics/proteomics.html per 20 Januari 2004